Advertisement

The Characteristics of the Atomic Structure and Morphology of the Ni-Cores in the Ni/Au Core–Shell Nanoparticles

  • Yu. A. Zakharov
  • R. P. KolmykovEmail author
  • V. M. Pugachev
  • V. G. Dodonov
  • D. M. Russakov
  • I. I. Obraztsova
  • I. P. Prosvirin
  • D. G. Yakubik
  • N. V. Ivanova
  • N. N. Ivanov
  • L. M. Hitsova
Article
  • 95 Downloads

Abstract

The Ni-nanoparticles, being similar to the nanocores of the Ni/Au core–shell nanoparticles, are made up of the structural domains with the dimensions about 1 nm. It is experimentally shown in this work for the first time by the combination of the small-angle X-ray scattering (SAXS) and the powder X-ray diffraction (XRD). The atomic structure of these domains is not a face-centered cubic lattice (FCC) inherent in the bulk state of Ni. This fact has been established by using the transmission electron microscopy (TEM) and XRD, calculated and confirmed by the observed features of an anodic oxidation and the differential scanning calorimetry (DSC) results for the investigated Ni-nanoparticles. Thus, the Ni-nanocores are composed of the domains with a structure formed by the icosahedra in the synthesis often used to obtain the core–shell nanoparticles.

Keywords

Ni Nanoparticles Core Morphology Structure 

Notes

Acknowledgements

The work is complete with the assistance of the comprehensive program of the FSI (Fundamental Scientific Investigations) of the Siberian Branch of the Russian Academy of Sciences (# АААА-А16-116122910066-3, V.45 project). The work has carried out using the research facilities of the FRC CCC SB RAS (The Analytical Scientific Centre of Carbonic material Composition and Structure, Kemerovo). The authors thank R.S. Islamov for linguistic support.

Author Contributions

The manuscript was written through the contributions of all authors: YuZ wrote the article and made the general leadership of the work; RK wrote the article and its corresponding part, made all illustrations and calculations, prepared an English version of the manuscript; VP and VD took the XRD, and the SAXS measurements, and wrote the 5th part of the article; DR made the TEM experiments; IO made the synthesis of the Ni-NPs and the OAS experiments; IP made the XPS measurements; DY made the calculations of the XRD patterns; NI and NI made the electrochemical experiments; LH made the TMSA experiments. All authors have given approval to the final version of the manuscript.

References

  1. 1.
    Y. Bao, H. Calderon, K.M. Krishnan, Synthesis and characterization of magnetic-optical Co–Au core-shell nanoparticles. J. Phys. Chem. C 111(5), 1941–1944 (2007).  https://doi.org/10.1021/jp066871y CrossRefGoogle Scholar
  2. 2.
    J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E.E. Carpenter, C.J. O’Connor, Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem. 159, 26–31 (2001).  https://doi.org/10.1006/jssc.2001.9117 CrossRefGoogle Scholar
  3. 3.
    S.J. Cho, J.C. Idrobo, J. Olamit, K. Liu, N.D. Browning, S.M. Kauzlarich, Grown mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater. 17(12), 3181–3186 (2005).  https://doi.org/10.1021/cm0500713 CrossRefGoogle Scholar
  4. 4.
    Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.J. Hu, Yu.J. Xu, L.P. Wen, S.H. Yu, Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407–1411 (2010).  https://doi.org/10.1007/s40820-017-0135-7 CrossRefGoogle Scholar
  5. 5.
    J. Park, J. Cheon, Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 123(24), 5743–5746 (2001).  https://doi.org/10.1021/ja0156340 CrossRefGoogle Scholar
  6. 6.
    D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, S. Liu, Properties of core-shell Ni–Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion. Chem. Mater. 19(14), 3399–3405 (2007).  https://doi.org/10.1021/cm070182x CrossRefGoogle Scholar
  7. 7.
    J. Zhang, M. Post, T. Veres, Z.J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, B. Simard, Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J. Phys. Chem. B 110(14), 7122–7128 (2006).  https://doi.org/10.1021/jp0560967 CrossRefGoogle Scholar
  8. 8.
    X.B. Zhang, J.M. Yan, S. Han, H. Shioyama, Q. Xu, Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalyst for ammonia borane oxidation: the role of crystallinity of the core. J. Am. Chem. Soc. 131(8), 2778–2779 (2009).  https://doi.org/10.1021/ja808830a CrossRefGoogle Scholar
  9. 9.
    G. Wang, H. Wu, D. Wexler, H. Liu, O. Savadogo, Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. J. Alloys Compd. 503(1), L1–L4 (2010).  https://doi.org/10.1016/j.jallcom.2010.04.236 CrossRefGoogle Scholar
  10. 10.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009).  https://doi.org/10.1002/anie.200802248 CrossRefGoogle Scholar
  11. 11.
    M. Schnedlitz, M. Lasserus, R. Meyer, D. Knez, F. Hofer, W.E. Ernst, A.W. Hauser, Stability of core-shell nanoparticles for catalysis at elevated temperatures: structural inversion in the Ni-Au system observed at atomic resolution. Chem. Mater. 30(3), 1113–1120 (2018).  https://doi.org/10.1021/acs.chemmater.7b05075 CrossRefGoogle Scholar
  12. 12.
    M. Lorenz, M. Schulze, XPS analysis of electrochemically of oxidized nickel surfaces. Fresenius’ J. Anal. Chem. 365(1–3), 154–157 (1999).  https://doi.org/10.1007/s002160051463 CrossRefGoogle Scholar
  13. 13.
    I.G. Casella, M.R. Guascito, M.G. Sannazzaro, Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold surface electrodes. J. Electroanal. Chem. 462, 202–210 (1999).  https://doi.org/10.1016/S0022-0728(98)00413-6 CrossRefGoogle Scholar
  14. 14.
    L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012).  https://doi.org/10.1039/C1CS15166E CrossRefGoogle Scholar
  15. 15.
    V. Klimov, Nanoplasmonics (Pan Stanford Publishing Pte Ltd, Singapore, 2012)Google Scholar
  16. 16.
    J.A. Zakharov, N.K. Yeremenko, A.S. Bogomjakov, R.P. Kolmykov, A.N. Yeremenko, Nanosized core-shell Ni/Au system and its properties. Eurasian Chem.-Technol. J. 17(2), 159–164 (2015).  https://doi.org/10.18321/ectj206 CrossRefGoogle Scholar
  17. 17.
    Yu.A. Zakharov, V.M. Pugachev, R.P. Kolmykov, D.M. Russakov, V.G. Dodonov, I.I. Obraztsova, I.P. Prosvirin, N.V. Ivanova, N.N. Ivanov, Morphology of Ni (core)/Au (shell) nanoparticles. Gold Bull. 50(3), 225–234 (2017).  https://doi.org/10.1007/s13404-017-0212-1 CrossRefGoogle Scholar
  18. 18.
    V.G. Dodonov, V.M. Pugachev, Using of the method of X-ray diffraction for the analysis of the structure of ultra-disperse systems. KemSU Bull. 3(15), 131–136 (2003)Google Scholar
  19. 19.
    J.D. Gale, A.L. Rohl, The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003).  https://doi.org/10.1080/0892702031000104887 CrossRefGoogle Scholar
  20. 20.
    S. Fleming, A. Rohl, GDIS: a visualization program for molecular and periodic systems. Z. Kryst. 220, 580–584 (2005).  https://doi.org/10.1524/zkri.220.5.580.65071 Google Scholar
  21. 21.
    Yu.A. Zakharov, V.M. Pugachev, V.G. Dodonov, R.P. Kolmykov, O.V. Vasil’eva, Phase composition and some properties of nanosized powders. Perspect. Mater. 4, 156–164 (2011)Google Scholar
  22. 22.
    Yu.A. Zakharov, A.N. Popova, R.P. Kolmykov, V.M. Pugachev, V.G. Dodonov, Synthesis and properties of nanosized metal powders of the iron group and their mutual systems. Perspect. Mater. S6, 249–254 (2008)Google Scholar
  23. 23.
    Yu.A. Zaharov, V.M. Pugachev, K.A. Datiy, A.N. Popova, A.S. Valnyukova, Nanostructured polymetallic powders to create new functional materials on its base. Key Eng. Mater. 670, 49–54 (2016).  https://doi.org/10.4028/www.scientific.net/KEM.670.49 CrossRefGoogle Scholar
  24. 24.
    A.D. Pomogailo, A.S. Rozenberg, I.E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000)Google Scholar
  25. 25.
    H. Yamashita, T. Funabiki, S. Yoshida, Structural modification towards metastable states and catalytic activity of an amorphous Ni–B alloy. J. Chem. Soc. Chem. Commun. 13, 868–869 (1984).  https://doi.org/10.1039/C39840000868 CrossRefGoogle Scholar
  26. 26.
    X.D. Liu, M. Umemoto, W. Deng, L.Y. Xiong, D.H. Pin, K. Lu, Characterization of nanocrystalline Ni33Zr67 alloy. J. Appl. Phys. 81, 1103 (1997).  https://doi.org/10.1063/1.363984 CrossRefGoogle Scholar
  27. 27.
    M.C. Biesinger, B.P. Paine, L.W.M. Lau, A. Gerson, RSC. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009).  https://doi.org/10.1002/sia.3026 CrossRefGoogle Scholar
  28. 28.
    C.W. Ong, H. Huang, B. Zheng, R.W.M. Kwok, Y.Y. Hui, W.M. Laua, X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy. J. Appl. Phys. 95, 3527–3534 (2004).  https://doi.org/10.1063/1.1651321 CrossRefGoogle Scholar
  29. 29.
    A. Hankin, G.H. Kelsal, Electrochemical recovery of nickel from nickel sulfamate plating effluents. J. Appl. Electrochem. 42, 629–643 (2012).  https://doi.org/10.1007/s10800-012-0447-8 CrossRefGoogle Scholar
  30. 30.
    V.M. Pugachev, Yu.V. Karpushkina, V.G. Dodonov, Yu.A. Zakharov Modeling of the reflex profile of nanostructured materials in doublet emission. 2-nd All-Russian Scientific Conference “Methods of studying the composition and structure of functional materials”, October 21–25, 2013, Novosibirsk, Russia: Collection of Abstracts, CD-ROM, ed. by S.V. Tsibulya/Novosibirsk: Institute of Catalysis, SB RAS, 2013, pp. 151–152. ISBN 978-5-906376-03-9Google Scholar
  31. 31.
    V.G. Dodonov, V.M. Pugachev, A. Zaharov Yu, Determination of the surface structure peculiarities of nanoscale metal particles via small-angle X-ray scattering. Inorg. Mater. Appl. Res. 7(5), 624–634 (2016).  https://doi.org/10.1134/S207511331605004X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. A. Zakharov
    • 1
    • 2
  • R. P. Kolmykov
    • 1
    • 2
    Email author
  • V. M. Pugachev
    • 1
  • V. G. Dodonov
    • 1
  • D. M. Russakov
    • 1
  • I. I. Obraztsova
    • 2
  • I. P. Prosvirin
    • 3
  • D. G. Yakubik
    • 1
  • N. V. Ivanova
    • 1
  • N. N. Ivanov
    • 1
  • L. M. Hitsova
    • 2
  1. 1.Kemerovo State UniversityKemerovoRussia
  2. 2.Federal Research Center of Coal and Coal Chemistry SB RASKemerovoRussia
  3. 3.International Tomography Center SB RASNovosibirskRussia

Personalised recommendations