Advertisement

The Effect of Graphene Oxide Concentration on Luminescence Properity of Tb3+-Complexes

  • Wenjun Zhang
  • Yuan Wang
  • Xiaoxiong Zhang
  • Jinglin Li
  • Jie Fu
Article
  • 6 Downloads

Abstract

The method to regulate the concentration of graphene oxide (GO) via changing polarity of solution was developed, then the Tb(acac)n(PMA)n/GO composites were synthesized by coordination bond. The tunable photoluminescence property is achieved under different concentration of GO dispersion. The mechanism of tunable luminescence also is elucidated in details. Simultaneously, the strong thermal stability of Tb(acac)n(PMA)n/GO complexes series is performed because of the function of PMA, which suggests potential application in optical fields such as photo-electric device.

Keywords

Graphene oxide Polarity solution Rare-earth Luminescence 

Notes

Acknowledgements

This study was supported by the Education Department of Hebei Province [Grant Number ZD2017214].

References

  1. 1.
    J.C. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Kawa, J.M. Fréchet, Chem. Mater. 10, 286–296 (1998)CrossRefGoogle Scholar
  3. 3.
    C.J. Höller, P.R. Matthes, M. Adlung, C. Wickleder, K. Müller-Buschbaum, Eur. J. Inorg. Chem. 2012, 5479–5484 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Huang, Rare Earth Coordination Chemistry: Fundamentals and Applications (John Wiley & Sons, 2010)Google Scholar
  5. 5.
    Q. Liu, D.-M. Wang, Y.-Y. Li, M. Yan, Q. Wei, B. Du, Luminescence 25, 307–310 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Escudero, A.I. Becerro, C. Carrillo-Carrión, N.O. Núñez, M.V. Zyuzin, M. Laguna, D. González-Mancebo, M. Ocaña, W.J. Parak, Nanophotonics 6, 881–921 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Wang, F. Liu, X. Yang, X. Wang, R. Liu, S. Zhao, S. Chen, Thermochim. Acta 490, 43–46 (2009)CrossRefGoogle Scholar
  8. 8.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)CrossRefGoogle Scholar
  9. 9.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  10. 10.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  11. 11.
    Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924–3930 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Liang, X. Zhu, P. Lian, W. Yang, H. Wang, J. Solid State Chem. 184, 1400–1404 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, C. Chen, X. Fang, Z. Li, H. Qiao, B. Sun, Q. Bao, J. Solid State Chem. 224, 102–106 (2015)CrossRefGoogle Scholar
  14. 14.
    A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Bull. Chem. Soc. Jpn. 90, 627–648 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, Chem. Rev. 117, 6225 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha, K. Ariga, L.K. Shrestha, Bull. Chem. Soc. Jpn. 90, 847–853 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42, 911–914 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Wang, B. Wang, J. Park, J. Yang, X. Shen, J. Yao, Carbon 47, 68–72 (2009)CrossRefGoogle Scholar
  19. 19.
    M.C. Hsiao, S.H. Liao, M.Y. Yen, P. Liu, N.W. Pu, C.A. Wang, C.C.M. Ma, ACS Appl. Mater. Interfaces 2, 3092 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, J.M. Kikkawa, Appl. Phys. Lett. 94, 197 (2009)Google Scholar
  21. 21.
    Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang, Chem. Commun. 46, 7319 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, Adv. Mater. 21, 1275–1279 (2010)CrossRefGoogle Scholar
  23. 23.
    W. Wei, T. He, X. Teng, S. Wu, L. Ma, H. Zhang, J. Ma, Y. Yang, H. Chen, Y. Han, Small 8, 2271–2276 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Xie, J. Cheng, Y. Li, P. Xi, F. Chen, H. Liu, F. Hou, Y. Shi, L. Huang, Z. Xu, J. Mater. Chem. 22, 9308–9314 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.C. Zhao, L.J. Huang, Y.X. Wang, J.G. Tang, Y. Wang, J.X. Liu, L.A. Belfiore, M.J. Kipper, J. Alloys Compd. 687, 95–103 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Fan, K. Shang, B. Sun, L. Chen, S. Ai, J. Mater. Sci. 49, 2672–2679 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, W. Zhang, Y. Li, C. Li, Dyes Pigm. 140, 150–156 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Zhang, X. Zou, J. Zhao, J. Mater. Chem. C 3, 1294–1300 (2015)CrossRefGoogle Scholar
  29. 29.
    Z.X. Gan, S.J. Xiong, X.L. Wu, C.Y. He, J.C. Shen, P.K. Chu, Nano Lett. 11, 3951–3956 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Liu, J. Xie, M. Hui, Z. Xi, P. Yue, J. Lv, H. Ge, R. Na, H. Su, X. Xie, Small 13 (2017) 1601001CrossRefGoogle Scholar
  31. 31.
    W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Chem. Soc. Rev. 46, 3242 (2017)CrossRefGoogle Scholar
  32. 32.
    T. Koizuka, M. Yamamoto, Y. Kitagawa, T. Nakanishi, K. Fushimi, Y. Hasegawa, Bull. Chem. Soc. Jpn. 90, 1287–1292 (2017)CrossRefGoogle Scholar
  33. 33.
    R.W. Huang, Y.S. Wei, X.Y. Dong, X.H. Wu, C.X. Du, S.Q. Zang, T.C.W. Mak, Sci. Found. China 9, 689 (2017)Google Scholar
  34. 34.
    W. Zhang, X. Zou, H. Li, J. Hou, J. Zhao, J. Lan, B. Feng, S. Liu, RSC Adv. 5, 146–152 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Nano Lett. 9, 1593 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Wang, Y. Huang, Y. Wang, L. Dai, RSC Adv. 6, 70925–70931 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Adv. Mater. 22, 505–509 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Nat. Chem. 2, 581 (2010)CrossRefGoogle Scholar
  39. 39.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)CrossRefGoogle Scholar
  40. 40.
    R.S. Swathi, K.L. Sebastian, J. Chem. Phys. 129, 054703 (2008)CrossRefGoogle Scholar
  41. 41.
    J. Kim, L.J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc. 132, 260–267 (2010)CrossRefGoogle Scholar
  42. 42.
    L. Xie, X. Ling, Y. Fang, J. Zhang, Z. Liu, J. Am. Chem. Soc. 131, 9890 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenjun Zhang
    • 1
  • Yuan Wang
    • 1
  • Xiaoxiong Zhang
    • 1
  • Jinglin Li
    • 1
  • Jie Fu
    • 1
  1. 1.School of Chemical EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations