Advertisement

Improving the Optical, Mechanical and Dielectric Properties of PMMA: Mg1−xCuxO Based Polymer Nanocomposites

  • H. Abomostafa
  • S. A. Gad
  • A. I. Khalaf
Article
  • 57 Downloads

Abstract

The aim of the presented work is to study the optical, mechanical and dielectric properties of Poly methyl methacrylate (PMMA) filled with Mg1−xCuxO, 0.05 ≤ x ≤ 0.2 synthesized in the form of casted films. Structures of the prepared powder and films were examined by X-ray diffraction (XRD), where the recorded pattern reveals the existence of cubic phase structure for Mg1−xCuxO powder and films. Fourier transform infrared (FTIR) spectra confirmed that Mg0.9Cu0.1O nanoparticles were successfully incorporated into the PMMA. The morphology of the nanocomposite films was studied using field emission scanning electron microscopy (FESEM). Well dispersion of Mg1−xCuxO nanoparticles in the PMMA matrix and formation of some cluster were observed. The optical properties of the prepared nanocomposite films were performed by means of UV–Vis technique. The absorption coefficient, optical energy band gap, extinction coefficient and the refractive index of the casted films were calculated. The results showed a decrease in optical energy band gap, and an increase of absorption coefficient, extinction coefficient and refractive index with increasing the percentage ratio of Cu in PMMA matrix. There is an enhancement in mechanical properties. The microhardness increases as the Cu content increases up to x = 0.15 wt% after that it decreases. The tensile strength was measured and raised from 23.87 to 43.30 MPa with increasing the Cu content up to x = 0.10 after that it decreases. Finally, the permittivity (ε′) and dielectric loss (ε″) were decreased as the frequency increased but (ε′) became nearly constant at higher frequency range. Moreover, ε′ and tan δ increased as the Cu content increases. Also the AC conductivity was measured to study the conduction mechanism in the presented nanocomposite films. The calculated dc conductivity was increased as the Cu content in PMMA matrix increased.

Keywords

Polycrystalline Mg1−xCuxPoly methyl methacrylate (PMMA) Optical properties Mechanical Properties Dielectric properties 

References

  1. 1.
    G.N. Smith, J.E. Hallett, P. Joesph, S.T. McNally, T. Zhang, F.D. Blum, J. Eastoe, Polym. J. 49, 711–719 (2017)CrossRefGoogle Scholar
  2. 2.
    M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Appl. Mater. 9, 419–433 (2017)Google Scholar
  3. 3.
    C.M. Wang, C.Y. Chen, W.S. Liao, Chim. Acta. 963, 93–98 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Compos. B. 122, 145–155 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Prog. Polym. Sci. 71, 91–143 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today: Proc. 5, 8678–8682 (2018)Google Scholar
  7. 7.
    T. Wang, G. Chen et al., Prog. Org. Coat. 59, 101 (2007)CrossRefGoogle Scholar
  8. 8.
    S.V. Kuppua, A.R. Jeyaramanb, P.K. Guruviaha, S. Thambusamya, Curr. Appl. Phys. 18, 619–625 (2018)CrossRefGoogle Scholar
  9. 9.
    C.H. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha et al., Bull. Chem. Soc. 90, 955 (2017)CrossRefGoogle Scholar
  10. 10.
    V.P. Anju, S.K. Narayanankutty, Polymer 119, 224–237 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Hoang, T.D. Dao, H.M. Jeong, Macro Mol. Chem. Phys. 216(7), 770–782 (2015)CrossRefGoogle Scholar
  12. 12.
    P. Maji, R. Bilash Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Kaur Kawaljeet, S. Samra, Phys. B 538, 29–34 (2018)CrossRefGoogle Scholar
  14. 14.
    V.L. Schade, T.S. Roukis, J. Foot Ankle Surg. 49, 55 (2010)CrossRefGoogle Scholar
  15. 15.
    S.P. Mohanty, M.N. Kumar, N.S. Murthy, J. Orthop. Surg 11, 73 (2003)CrossRefGoogle Scholar
  16. 16.
    N.L. Pleshko, A.L. Boskey, R. Mendelsohn, J. Histochem. Cytochem. 40, 1413 (1992)CrossRefGoogle Scholar
  17. 17.
    A. Stevens, J. Germain, Resin embedding media, in The Theory and Practice of Histological Techniques, 3rd edn., ed. by J.D. Bancroft, A. Stevens (Churchill Livingstone, New York, 1990)Google Scholar
  18. 18.
    P. Maji, R. Bilash, Choudhary, Mater. Chem. Phys. 193, 391–400 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Schexnailder, G. Schmidt, Colloidal Polym. Sci. A. 287, 1 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Majhi, R. Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)CrossRefGoogle Scholar
  21. 21.
    O. Gh. Sh.B. Abdullah, M.A. Aziz, Rasheed, J. Mater. Sci.: Mater. Electron. 28, 4513–4520 (2017)Google Scholar
  22. 22.
    C. Ristoscu, I.N. Mihailescu, Lasers—Appl. Sci. Ind. 3, 53 (2011)Google Scholar
  23. 23.
    O.A. Hamadi, J. Mater. Des. Appl. 222, 65 (2008)Google Scholar
  24. 24.
    O.A. Hamadi, Iraqi J. Appl. Phys. 4(3), 34 (2008)Google Scholar
  25. 25.
    A.A.K. Hadi, O.A. Hamadi, Iraqi J. Appl. Phys. Lett. 1(2), 23 (2008)Google Scholar
  26. 26.
    N. Tamaekong, C. Liewhiran, S. Phanichphant, J. Nanomater. 2014, 1 (2014)CrossRefGoogle Scholar
  27. 27.
    O.A. Hammadi, Photonic Sens. 5(2), 152 (2015)CrossRefGoogle Scholar
  28. 28.
    O.A. Hammadi, N.E. Naji, Opt. Quant. Electron. 48(8), 375 (2016)CrossRefGoogle Scholar
  29. 29.
    I.E. Wachs, G. Deo, J.M. Jehng, D.S. Kim, H. Hu, Heterogen. Hydrocarbon Oxid. 638, 292 (1996)CrossRefGoogle Scholar
  30. 30.
    O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, Opt. Quantum Electron. 47(12), 3805 (2015)CrossRefGoogle Scholar
  31. 31.
    O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nano Eng. Nanosyst. 230(1), 32 (2016)Google Scholar
  32. 32.
    S. Wang, F. Tristan, D. Minami, T. Fujimori, R. Cruz-Silva et al., Carbon 76, 220 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Fuad, Ibrahim, Iraqi J. Appl. Phys. 13(3), 1 (2017)Google Scholar
  34. 34.
    J. Kulkarni, R. Ravishankar, H. Nagabhushana, K.S. Anantharaju, R.B. Basavaraj, M. Sangeeta, H.P. Nagaswarupae, L. Renuka, Mater. Today: Proc. 4, 11756–11763 (2017)Google Scholar
  35. 35.
    H. Li, G.M. Cai, B. Song, Mater. Chem. Phys. 182, 445 (2016)CrossRefGoogle Scholar
  36. 36.
    D.W. Chae, B.C. Kim, Polym. Adv. Technol. 16, 846 (2005)CrossRefGoogle Scholar
  37. 37.
    I. Gill, Chem. Mater. 13, 3404 (2001)CrossRefGoogle Scholar
  38. 38.
    L. Shen, Q. Du, H. Wang, W. Zhong, Y. Yang, Polym. Int. 53, 1153 (2004)CrossRefGoogle Scholar
  39. 39.
    S.M. Safiullah, K.A. Wasi, K.A. Basha, Polymer 66, 29 (2015)CrossRefGoogle Scholar
  40. 40.
    M.I. Mohammed, J. Mol. Struct. 1169, 9–17 (2018)CrossRefGoogle Scholar
  41. 41.
    K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang et al., J Phys. Chem B. 110, 7259 (2006)CrossRefGoogle Scholar
  42. 42.
    D.F. Swinehart, The Beer-Lambert Law. J. Chem. Educ. 39(7), 333 (1962)CrossRefGoogle Scholar
  43. 43.
    K. Samanta, P. Bhattacharya, R. Katiyar, J. Appl. Phys. 105, 113929 (2009)CrossRefGoogle Scholar
  44. 44.
    C. Kan, Ch Wang, J. Zhu, H. Li, J. Solid State Chem. 183, 858–865 (2010)CrossRefGoogle Scholar
  45. 45.
    N.F. Mott, E.A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)Google Scholar
  46. 46.
    J. Tauc, A. Menth, J. Non. Cryst. Solids 569, 8 (1972)Google Scholar
  47. 47.
    N. Chopra, A. Mansingh, G.K. Chadha, J. Non. Cryst. Solids 194, 126 (1990)Google Scholar
  48. 48.
    O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. Mater. Electron. 26(7), 5303–5309 (2015)CrossRefGoogle Scholar
  49. 49.
    S.B. Aziz, J. Electron. Mater. 41(1), 736–745 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Mahendia, A.K. Tomara, S. Kumar, J. Alloys Compounds 508, 406 (2011)CrossRefGoogle Scholar
  51. 51.
    L. Bi, A.R. Taussig, H.-S. Kim et al., Phys. Rev. B 10(78), 104106 (2008)CrossRefGoogle Scholar
  52. 52.
    R.H. French, J.M. Rodr´ıguez-Parada, M.K. Yang, R.A. Derryberry, N.T. Pfeiffenberger, Solar Energy Mater. Solar Cells 8, 2077 (2011)CrossRefGoogle Scholar
  53. 53.
    M.K. Yang, R.H. French, E.W. Tokarsky, J. Micro Nanolithogr. MEMS MOEMS 7(3), 1 (2008)CrossRefGoogle Scholar
  54. 54.
    H.P. Fu, R.Y. Hong, Y.J. Zhang, H.Z. Li, B. Xu, Y. Zhengand, D.G. Wei, Polym. Adv. Technol. 20, 84 (2009)CrossRefGoogle Scholar
  55. 55.
    P. Maji, R.B. Choudhary, M. Majhi, Optik 127(11), 4848–4853 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Majhi, R.B. Choudhary, P. Maji, Bull. Mater. Sci. 38(5), 417–425 (2015)CrossRefGoogle Scholar
  57. 57.
    S.B. Aziz, Bull. Mater. Sci. 38(6), 1597–1602 (2015)CrossRefGoogle Scholar
  58. 58.
    S.B. Aziz, Z.H.Z. Abidin, Mat. Chem. Phys. 144(3), 280–286 (2014)CrossRefGoogle Scholar
  59. 59.
    H.P. De Oliveira, M.V.B. dos Santos, C.G. dos Santos, C.P. de Melo, Mater. Charact. 50, 223 (2003)CrossRefGoogle Scholar
  60. 60.
    F. Ali, M.L. Hassan, A.A. Ward, E.M. El-Giar, Polym. Compos. 38, 893 (2017)CrossRefGoogle Scholar
  61. 61.
    S. Miyauchiand, E. Togashi, J. Appl. Polym. Sci. 30, 2743 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Physics DepartmentMenoufia UniversityShebin El KoomEgypt
  2. 2.Solid State Physics DepartmentPhysics Research Division National Research CentreGizaEgypt
  3. 3.Polymers and Pigments Department, National Research Centre (NRC)GizaEgypt

Personalised recommendations