Advertisement

The Effect of Difference Molar Ratios of Dibromo-EDOT as Hole Transporting Material for Solid State Dye-Sensitized Solar Cells

  • Dong Woo Kim
  • Rajesh Cheruku
  • Suresh Thogiti
  • Ganesh Koyyada
  • Phuong Ho
  • Jae Hong Kim
Communication

Abstract

The dye-sensitized solar cells (DSSCs) are one of the promising organic photovoltaic cells due to their low cost, flexibility, and relatively good efficiency. Nevertheless, utilization of liquid electrolyte in DSSCs brings practical problems for commercialization, which leads to solid-state dye-sensitized solar cells (ssDSSCs), that based on organic conducting polymers or inorganic p-type semiconductors as hole transport materials (HTM). A one-side ssDSSCs fabricated here, with a conductive polymer Dibromo-EDOT as an HTM, and also check ssDSSCs efficiency by variation of the HTM concentrations. The morphology of cells examined through SEM, and intensity-modulated photocurrent/voltage spectroscopy, measurements were used to elucidating the electrochemical properties of ssDSSCs. We also optimize the blocking layer thickness and different molar ratios of HTM for the best efficient ssDSSCs.

Keywords

SsDSSC Solid state polymerization monomer Hole transport material 

Notes

Acknowledgements

This work was supported by the 2014 Yeungnam University Research Grant. This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201760).

Supplementary material

10904_2018_915_MOESM1_ESM.docx (301 kb)
Supplementary material 1 (DOCX 300 KB)

References

  1. 1.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    S. Mathew, A. Yella, P. Gao, R.H. Baker, B.F.E. Curchod, N.A. Astani, I. Tavernelli, U. Rothlisberger, Md.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. 38, E254 (2015)CrossRefGoogle Scholar
  4. 4.
    S.I. Cha, Y. Kim, K.H. Hwang, Y.J. Shin, S.H. Seo, D.Y. Lee, Energy Environ. Sci. 5, 6071 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Degbia, M. Ben Manaa, B. Schmaltz, N. Berton, J. Bouclé, R. Antony, F. Tran, Van, Mater. Sci. Semicond. Proc. 43, 90 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Delices, J. Zhang, M.-P. Santoni, C.-Z. Dong, F. Maurel, N. Valchopoulos, A. Hagfeldt, M. Jouini, Electrochim. Acta 269, 163 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, T. Sato, J. Am. Chem. Soc. 130, 11568 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Kim, J.K. Koh, J. Kim, W.S. Chi, J.H. Kim, E.Y. Kim, ChemSusChem 5, 2173 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Kim, J.K. Koh, B. Kim, S.H. Ahn, H. Ahn, D.Y. Ryu, J.H. Kim, E. Kim, Adv. Funct. Mater. 21, 4633 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Meng, D.F. Perepichka, M. Bendikov, F. Wudl, G.Z. Pan, W. Yu, A.S. Brown, J. Am. Chem. Soc. 125, 15151 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, J. Mol. Struct. 1150, 580 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations