Magneto Optical Properties and Hyperfine Interactions of Cr3+ Ion Substituted Copper Ferrite Nanoparticles

  • A. BaykalEmail author
  • S. Guner
  • H. Gungunes
  • K. M. Batoo
  • Md. Amir
  • A. Manikandan


Spinel CuCrxFe2−xO4 (0.0 ≤ y ≤ 1.0) nanoparticles were fabricated by co-precipitation. X-ray diffraction proved the pureness and cubic crystal assembly of products which have the crystallite sizes varying between 16 and 33 nm. The cubic morphology and expected chemical composition, spectral analyses of all sample were accomplished via Scanning electron microscopy along with Energy Dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy respectively. Magnetic and optical characterization of samples were done via Vibrating sample magnetometer, Mössbauer spectroscopy and Diffuse reflectance spectroscopy. Kubelka–Munk model was applied to UV–Vis data for calculating the optical Eg (band gap) values between minimum 1.20 and maximum 1.80 eV. Mössbauer analysis determined the consequence of Cr3+ substitution on isomer shift and quadrupole splitting of all products etc. The specific magnetization (σ-H) hysteresis curves have finite coercivity (in a range of 35–410 Oe) and retentivity (in a range of 0.33–3.84 emu/g) values and reveal the soft ferrimagnetic nature of spinel CuCryFe2−yO4 nanoparticles (NPs). The estimated saturation magnetization Ms value of 35.17 emu/g is maximum for pristine CuFe2O4 NPs and decreases to minimum value of 1.57 emu/g for CuCr0.4Fe1.6O4 NPs due to Cr3+ ion substitution. The calculated squareness ratios less than 0.5 assign the uniaxial anisotropy for all CuCryFe2−yO4 NPs. The magneto-crystalline anisotropy field (Ha) values less than 10.0 kOe except for the composition of CuCr0.2Fe1.8O4 NPs are other magnetic data to reveal the soft magnetic character of samples.


Hexafferites Hyperfine interactions Magnetic properties Mossbauer spectroscopy Optical materials/properties 



Dr. Baykal thanks to Deanship of Scientific Research (DSR) and Institute for Research & Medical Consultations (IRMC) of Imam Abdulrahman Bin Faisal University for providing the financial assistance for this study. Application Number: 2017-605-IRMC. K.M. Batoo is thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project No. RG-1437-030.


  1. 1.
    W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11, 479–484 (2009)CrossRefGoogle Scholar
  2. 2.
    V. Krishnan, R.K. Selvan, C.O. Augustin, A. Gedanken, H. Bertagnolli, EXAFS and XANES investigations of CuFe2O4 nanoparticles and CuFe2O4–MO2 (M = Sn, Ce) nanocomposites. J. Phys. Chem. C 111, 16724–16733 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Ohnishi, T. Teranishi, Crystal distortion in copper ferrite-chromite series. J. Phys. Soc. Jpn. 16, 35–43 (1961)CrossRefGoogle Scholar
  4. 4.
    Q. Xu, Y. Wei, Y. Liu, X. Ji, L. Yang, M. Gu, Preparation of Mg/Fe spinel ferrite nanoparticles from Mg/Fe-LDH microcrystallites under mild conditions. Solid State Sci. 11, 472–478 (2009)CrossRefGoogle Scholar
  5. 5.
    M.B. Tian, Magnetic Material. (Tsinghua University Press, Beijing, 2001)Google Scholar
  6. 6.
    K.J. Kim, J.H. Lee, H. Lee, Magneto-optical investigation of spinel ferrite CuFe2O4: observation of Jahn–Teller effect in Cu2+ ion. J. Magn. Magn. Mater. 279, 173–177 (2004)CrossRefGoogle Scholar
  7. 7.
    L. Nixon, C.A. Koval, R.D. Noble, G.S. Slaff, Preparation and characterization of novel magnetite-coated ion-exchange particles. Chem. Mater. 4, 117–121 (1992)CrossRefGoogle Scholar
  8. 8.
    M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190–195 (2006)CrossRefGoogle Scholar
  9. 9.
    A.A. Pandit, S.S. More, R.G. Dorik, K.M. Jadhav, Bull. Mater. Sci. 26, 17 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Wang, Mater. Sci. Eng. B 127, 81 (2006)CrossRefGoogle Scholar
  11. 11.
    N. Moumen, M.P. Pileni, Chem. Mater. 8, 1128–1134 (1996)CrossRefGoogle Scholar
  12. 12.
    M. El-Hilo, H. Pfeiffer, K. O’Grady, W. Schiippel, E. Sinn, P. Giirnert, M. Rösler, D.P.E. Dickson, R.W. Chantrell, Magnetic properties of barium hexaferrite powders. J. Magn. Magn. Mater. 129, 339–347 (1994)CrossRefGoogle Scholar
  13. 13.
    V.K. Sankaranarayanan, D.C. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153, 337–346 (1996)CrossRefGoogle Scholar
  14. 14.
    Y.L. Liu, Z.M. Liu, Y. Yang, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens. Actuators B 107, 600–604 (2005)CrossRefGoogle Scholar
  15. 15.
    S.W. Cao, Y.J. Zhu, G.F. Cheng, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J. Hazard. Mater. 171, 431–435 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Hu, L.S. Li, W. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Baykal, N. Kasapoglu, Z. Durmus, H. Kavas, M.S. Toprak, Y. Koseoglu, CTAB-assisted hydrothermal synthesis and magnetic characterization of NixCo1−xFe2O4 nanoparticles (x = 0.0, 0.6, 1.0. Turk. J. Chem. 33, 33–45 (2009)Google Scholar
  18. 18.
    J. Sloczynski, J. Janas, T. Machej, J. Rynkowski, J. Stoch, Catalytic activity of chromium spinels in SCR of NO with NH3. Appl. Catal. B 24, 45–60 (2000)CrossRefGoogle Scholar
  19. 19.
    M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001)CrossRefGoogle Scholar
  20. 20.
    P.M. Ajayan, P. Redlich, M. Ruhle, Structure of carbon nanotube-based nanocomposites. J. Microsc. 185, 275–282 (1997)CrossRefGoogle Scholar
  21. 21.
    X. Wang, G. Yang, Z. Zhang, L. Yan, J. Meng, Synthesis of strong-magnetic nanosized black pigment ZnxFe3–xO4. Dyes Pigm. 74, 269–272 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Koledintseva, J. Drewniak, Y. Zhang, J. Lenn, M. Thoms, Modeling of ferrite-based materials for shielding enclosures. J. Magn. Magn. Mater. 321, 730–733 (2009)CrossRefGoogle Scholar
  23. 23.
    W.Z. Lv, B. Liu, Z.K. Luo, X.Z. Ren, P.X. Zhang, J. Alloys Compd. 465, 261 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, J. Alloys Compd. 476, 715 (2009)CrossRefGoogle Scholar
  25. 25.
    Z.B. Huang, Y. Zhu, S.T. Wang, G.F. Yin, Cryst. Growth Des. 6, 1931 (2006)CrossRefGoogle Scholar
  26. 26.
    Z. Huang, G. Yin, X. Liao, Y. Yao, Y. Kang, J. Colloid Interface Sci. 317, 530 (2008)CrossRefGoogle Scholar
  27. 27.
    C.D. Lokhande, S.S. Kulkarni, R.S. Mane, S.H. Han, J. Cryst. Growth 303, 303–387 (2007)CrossRefGoogle Scholar
  28. 28.
    M.A. Gabal, Structural and magnetic properties of nano-sized Cu–Cr ferrites prepared through a simple method using egg white. Mater. Lett. 64, 1887–1890 (2010)CrossRefGoogle Scholar
  29. 29.
    Md. Amir, A. Baykal, M. Sertkol, H. Sözeri, Microwave assisted synthesis and characterization of CoxZn1−xCr0.5Fe0.5O4 nanoparticles. J. Inorg. Organomet. Polym. 25, 747–754 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Baykal, A.Z. Elmal, M. Sertkol, H. Sözeri, Structural and magnetic properties of NiCrxFe2–xO4 nanoparticles synthesized via microwave method. J. Supercond. Nov. Magn. 28, 3405–3410 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Jauhar, A. Goyal, N. Lakshmi, K. Chandra, S. Singhal, Doping effect of Cr3þ ions on the structural, magnetic and electrical properties of CoeCd ferrites: a study on the redistribution of cations in CoCd0.4CrxFe1.6xO4 (0.1 × 0.6) ferrites. Mater. Chem. Phys. 139, 836–843 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Singhal, S. Jauhar, J. Singh, K. Chandra, S. Bansal, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2−xO4, 0 6 × 6 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)CrossRefGoogle Scholar
  33. 33.
    M.A. Gabal, S. Kosa, T.S. Almutairi, Cr-substitution effect on the structural and magnetic properties of nano-sized NiFe2O4 prepared via novel chitosan route. J. Magn. Magn. Mater. 356, 37–41 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Silambarasu, A. Manikandan, K. Balakrishnan, Room temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nano-catalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Suguna, S. Shankar, S.K. Jaganathan, A. Manikandan, Novel synthesis of spinel MnxCo1–xAl2O4 (x = 0.0 to 1.0) nano-catalysts: effect of Mn2+ doping on structural, morphological and opto-magnetic properties. J. Supercond. Nov. Magn. 30, 691–699 (2017)CrossRefGoogle Scholar
  37. 37.
    V.M. Teresita, A. Manikandan, B.A. Josephine, S. Sujatha, S.A. Antony, Electro-magnetic properties and humidity sensing studies of magnetically recoverable LaMgxFe1−xO3−δ perovskites nano-photocatalysts by sol-gel route. J. Supercond. Nov. Magn. 29, 1691–1701 (2016)CrossRefGoogle Scholar
  38. 38.
    B.A. Josephine, A. Manikandan, V.M. Teresita, S.A. Antony, Fundamental study of LaMgxCr1−xO3−δ perovskites nano-photocatalysts: sol-gel synthesis, characterization and humidity sensing. Korean J. Chem. Eng. 33, 1590–1598 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Barathiraja, A. Manikandan, A.M.U. Mohideen, S. Jayasree, S.A. Antony, Magnetically recyclable spinel MnxNi1−xFe2O4 (x = 0.0–0.5) nano-photocatalysts: structural, morphological and opto-magnetic properties. J. Supercond. Nov. Magn. 29, 477–486 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Baykal, S. Esir, A. Demir, S. Güner, Magnetic and optical properties of Cu1−xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Güner, Md. Amir, M. Geleri, M. Sertkol, A. Baykal, Magneto-optical properties of Mn3+ substituted Fe3O4 Nanoparticles. Ceram. Int. 41, 10915–10922 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Baykal, S. Güner, A. Demir, S. Esir, F. Genç, Effects of Zinc substitution on magneto-optical properties of Mn1−xZnxFe2O4/SiO2 nanocomposites. Ceram. Int. 40, 13401–13408 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Demir, S. Güner, Y. Bakış, S. Esir, A. Baykal, Magnetic and optical properties of Mn1 – xZnxFe2O4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 24, 729–736 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Kojima, E.P. Wohlfarth, Ferromagnetic Materials, vol. 3 (North-Magneto-Optical Recording Holland, Amsterdam, 1982), p. 305Google Scholar
  45. 45.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  46. 46.
    N. Najmoddin, A. Beitollahi, H. Kavas, S.M. Mohseni, H. Rezaie, J. Akerman, M.S. Toprak, XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40, 3619–3625 (2014)CrossRefGoogle Scholar
  47. 47.
    Md. Amir, M. Geleri, S. Güner, A. Baykal, H. Sözeri, Magneto optical properties of FeBxFe2−xO4nanoparticles. J. Inorg. Organomet. Polym. Mater. 25, 1111–1119 (2015)CrossRefGoogle Scholar
  48. 48.
    H.M. Widatallah, F.A.S. Al-Mamari, N.A.M. Al-Saqri, A.M. Gismelseed, I.A. Al-Omari, T.M.H. Al-Shahumu, A.F. Alhaj, A.M. Abo, E. Ata, M.E. Elzain, Mater. Chem. Phys. 140, 97–103 (2013)CrossRefGoogle Scholar
  49. 49.
    Md. Amir, B. Ünal, M. Geleri, H. Güngünes, S.E. Shirsath, Superlatt. Microstruct. 88, 450–466 (2015)CrossRefGoogle Scholar
  50. 50.
    Y.K. Kim, Jpn. J. Appl. Phys. 36, 6339–6343 (1997)CrossRefGoogle Scholar
  51. 51.
    M.A. Amer, M.A. Ahmed, M.K. El-Nimr, M.A. Mostafa, Hyperfine Interact. 96, 91–98 (1995)CrossRefGoogle Scholar
  52. 52.
    K.P. Thummer, M.C. Chhantbar, K.B. Modi, G.J. Baldha, H.H. Joshi, J. Magn. Magn. Mater. 280, 23 (2004)CrossRefGoogle Scholar
  53. 53.
    L. Neel, Ann. Phys. 3(1), 37–98 (1948)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Baykal
    • 1
    Email author
  • S. Guner
    • 2
  • H. Gungunes
    • 3
  • K. M. Batoo
    • 4
  • Md. Amir
    • 5
  • A. Manikandan
    • 6
  1. 1.Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamKingdom of Saudi Arabia
  2. 2.Institute of Physics (IA)RWTH Aachen UniversityAachenGermany
  3. 3.Physics DepartmentHitit UniversityÇevre Yolu Bulvarı-ÇorumTurkey
  4. 4.King Abdullah Institute for NanotechnologyKing Saudi UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Chemistry Department, Faculty of EngineeringIstanbul UniversityAvcılar-IstanbulTurkey
  6. 6.Chemistry Department, Bharath Institute of Higher Education and Research (BIHER)Bharath UniversityChennaiIndia

Personalised recommendations