Flexible Actuator and Generator Stimulated by Organic Vapors

  • Hailong Shen
  • Jianning DingEmail author
  • Ningyi YuanEmail author
  • Jiang Xu
  • Libiao Han
  • Xiaoshuang Zhou
  • Bijun Fang


For the current flexible actuators, the long-term performance and the reusability usually cannot meet the practical standards, and the bending direction is usually not controllable. To address this issue, a complicated manufacturing process employed to produce a flexible actuator with desirable bending property and durability. Here, we report an easy-to-prepare and low-cost fabrication method for the preparation of PVDF/PEDOT:PSS/CNTs composite film as a multifunctional actuator. This actuator can generate significant bending when exposed to acetone vapors, and the bending direction is adjustable by orienting the carbon nanotubes on the surface. Furthermore, the actuator can produce voltages up to 90 mV via the piezoelectricity of the PVDF. Overall, our approach provides a simple and promising strategy for producing self-powered devices.


Multifunctional actuator Carbon nanotubes Generator Piezoelectric materials 



This work was supported by the National Key Research and Development Program of China (2017YFB037001), the National Natural Science Foundation of China (91648109).

Supplementary material

Supplementary material 1 (MP4 3323 KB)

Supplementary material 2 (MP4 4512 KB)


  1. 1.
    C. Lv, H. Xia, Q. Shi, G. Wang, Y.S. Wang, Q.D. Chen, Y.L. Zhang, L.Q. Liu, H.B. Sun, Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films. Adv. Mater. Interfaces 4, 1601002 (2017)CrossRefGoogle Scholar
  2. 2.
    M.J. Villangca, D. Palima, A.R. Bañas, J. Glückstad, Light-driven micro-tool equipped with a syringe function. Light: Sci. Appl. 5, e16148 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Zhang, H. Zappe, A. Seifert, Wafer-scale fabricated thermo-pneumatically tunable microlenses. Light: Sci. Appl. 3, e145 (2014)CrossRefGoogle Scholar
  4. 4.
    I. Burgert, P. Fratzl, Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans.: Math. Phys. Eng. Sci. 367, 1541 (2009)CrossRefGoogle Scholar
  5. 5.
    D.D. Han, Y.L. Zhang, Y. Liu, Y.Q. Liu, B. Jiang, B. Han et al., Bioinspired graphene actuators prepared by unilateral UV irradiation of grapheme oxide papers. Adv. Funct. Mater. 25, 4548–4557 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Taccola, F. Greco, E. Sinibaldi et al., Toward a new generation of electrically controllable hygromorphic soft actuators. Commun. 27, 1668–1675 (2015)Google Scholar
  7. 7.
    G. Wang, H. Xia, X.C. Sun, C. Lv, S.X. Li et al., Actuator and generator based on moisture-responsive PEDOT: PSS/PVDF composite film. Sens. Actuators B 125, 1–25 (2017)Google Scholar
  8. 8.
    L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633–1642 (2013)CrossRefPubMedGoogle Scholar
  9. 9.
    A. Holmes-Siedle, P. Wilson, A. Verrall, PVDF: an electronically-active polymer for industry. Mater. Des. 4, 910–918 (1984)CrossRefGoogle Scholar
  10. 10.
    Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.W. Nan, Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene). J. Mater. Chem. 22, 8063–8068 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Xu, J. Ding, X. Zhou et al., Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J. Power Sources 340, 302–308 (2017)CrossRefGoogle Scholar
  12. 12.
    M.A. Rahman, G.S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd. 581, 724–730 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Soin, D. Boyer, K. Prashanthi, S. Sharma, A.A. Narasimulu, Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51, 8257–8296 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Meng, X. Zhu et al., Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J. Mater. Chem. C 5, 1–3 (2017)Google Scholar
  15. 15.
    R. Gregorio Jr, M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci. B 32, 859–870 (1994)CrossRefGoogle Scholar
  16. 16.
    A. Salimi, A.A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci. B 42, 3487–3495 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Gregorio Jr, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272–3279 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Yu, Y. Bai, Y. Zhou et al., Poly(vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles. 104 (2014) 469Google Scholar
  19. 19.
    B. Chu, X. Zhou, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations