Green Synthesis and Photogenerated Charge Carriers Transfer in SnO2 QDs Decorated rGO Nanosheets for Highly Efficient Visible Light Photocatalysis

Communication
  • 12 Downloads

Abstract

In recent years, SnO2/carbon nanostructures based composites have got attracted in solar–physical energy conversion as well as energy storage applications. We had conducted a green-SILAR (successive ionic layer absorption and reduction) methodology to produce the SnO2 QDs decorated reduced graphene oxide (rGO) sheets. The obtained materials were studied for their structural, morphological, optical, and sun light photocatalytic applications. The SnO2 QDs grown on the rGO sheets have exhibited the average crystalline size of 3.6 nm and the particles size of 3–7 nm. The UV–Vis absorption spectrum authenticate the existence of strong quantum confinement in the SnO2 QDs grown on the rGO sheets. The photocatalytic reaction conducted under sunlight exposure have showed several times enhanced efficiency for rGO/SnO2 QDs over the commercial Degussa P25 TiO2 nanoparticles. This study also acquaintances to the synergistic effect of co-photosensitization of dye molecules and graphene to SnO2.

Graphical Abstract

Keywords

Graphene SnO2 nanoparticles Sun light Photocatalyst Optical properties 

References

  1. 1.
    H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O’keeffe, O.M. Yaghi, Nature 427, 523 (2004)CrossRefGoogle Scholar
  2. 2.
    H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, J. Mater. Chem. 21, 5972 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Li, T. Liu, Y. Wang, Z. Wang, J. Colloid Interface Sci. 377, 114 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, Z. Xiong, X.S. Zhao, J. Mater. Chem. 21, 3634 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. He, Front. Mater. Sci. 1, 297 (2007)CrossRefGoogle Scholar
  6. 6.
    X. Liu, J. Fang, Y. Liu, T. Lin, Front. Mater. Sci. 10, 225–237 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Sahoo, S. Ramaprabhu, Carbon 127, 627 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Baraneedharan, C. Siva, K. Nehru, M. Sivakumar, J. Mater. Sci.: Mater. Electron. 25, 255 (2014)Google Scholar
  9. 9.
    F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska, L. Niu, Nanotechnology 20, 455602 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Zhuang, X. Xiaoyong, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong, Y. Zhou, ACS Appl. Mater. Interfaces 6, 613 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, Mater. Express 5, 319 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Iravani, Green Chem. 13, 2638 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Kumar, D. Azam, S. Raj, E. Kolanthai, K.S. Vasu, A.K. Sood, K. Chatterjee, J. Biomed. Mater. Res. B 104, 732 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Zhan, L. Zheng, Y. Pan, G. Sun, L. Li, J. Mater. Chem. 22, 2589 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Elango, S.M. Kumaran, S.S. Kumar, Spectrochim. Acta A 145, 176 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Sci. Rep. 4, 4684 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Wu, M. Jiang, X. Zhang, J. Cai, S. Lin, J. Mater. Sci. 52, 6656 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong, Y. Zhou, ACS Appl. Mater. Interfaces 6, 613 (2014)CrossRefGoogle Scholar
  21. 21.
    F.P. Fei, C.H. Tao, B.L. Min, Z. Kun, H.J. Rong, Acta Phys. Sin. 64, 7 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Petrochemical Technology, Bharathidasan Institute of Technology (BIT) CampusAnna UniversityThiruchirappalliIndia

Personalised recommendations