Polyvinylidenefluoride/Polymethylmethacrylate/Polyphosphazene/Lithium Tantalate Composites: Synthesis and Characterization
- 45 Downloads
Abstract
This study presents the preparation of poly vinylidene fluoride (PVDF) based polymethyl methacrylate (PMMA), Poly(bis(4-Aminophenoxy)phosphazene)(PPZ) and lithium tantalate (LT) composites films using solution blending process. The fabricated PVDF/PMMA/PPZ/LT composite films were evaluated using Fourier transformed infrared spectroscopy, Scanning electron microscopy, Differential scanning calorimetry and Thermo gravimetric analyses. The changes in microstructure, dielectric, morphological and thermal properties of these films with change in composition of PVDF/PMMA/PPZ/LT have been investigated. The high PMMA content and incorporation of LT favored the PVDF phase transition from ‘α’ to ‘β’ phase as shown by FT-IR analysis. The LT particles were properly dispersed in PVDF/PMMA/PPZ matrix as confirmed by scanning electron micrograph images. The dielectric properties of the PVDF/PMMA/PPZ improved with increasing the concentration of LT. The dielectric constant of the films increased with increase in LT content in the blends. The values of dielectric properties observed were higher at lower frequency at room temperature. The composites having 10, 20, 30 & 40% LT in blend samples showed regular increase in Tons, Tmax and corresponding char yield with increase in the filler content. All the composites demonstrated two steps decomposition due to the interaction of filler with polymers at high temperature leading to oxidative decomposition of polymeric chains.
Keywords
Polymer composites Polyphosphazene Lithium tantalate Polyvinylidene fluoride Poly methyl methacrylateNotes
Acknowledgements
We gratefully thank to the director, Defence Materials & Stores Research and Development Establishment Kanpur, India for providing the kind research facilities along with financial asistance for the research work.
References
- 1.M. Goel, Ceram. Int. 30, 1147 (2004)CrossRefGoogle Scholar
- 2.H.F. Castro, S. Lanceros-Méndez, J.G. Rocha, Mater. Sci. Forum. 514, 202 (2006)CrossRefGoogle Scholar
- 3.P.J. Cottinet, D. Guyomar, B. Guiffard, C. Putson, L. Lebrun, IEEE 57, 774 (2010)Google Scholar
- 4.A. Cornogolub, P. Cottinet, L. Petit, Smart Mater. Struct. 25, 095048 (2016)CrossRefGoogle Scholar
- 5.L. Lebrun, D. Guyomar, B. Guiffard, P.J. Cottinet, C. Putson, Sens. Actuators A 153, 251 (2009)CrossRefGoogle Scholar
- 6.H.S.F. Ahmed, M. Trollsas, L.W. Kleiner, U.S. Patent Application No. 15/063,375Google Scholar
- 7.G.M. Lous, I.A. Cornejo, T.F. McNulty, A. Safari, S.C. Danforth, J. Am. Ceram. Soc. 83, 124 (2007)CrossRefGoogle Scholar
- 8.C.K. Purvis, P.L. Taylor, J. Appl. Phys. 54, 1021 (1983)CrossRefGoogle Scholar
- 9.P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)CrossRefGoogle Scholar
- 10.A.A. Yousefi, Iran. Polym. J. 20, 109 (2011)Google Scholar
- 11.M. Qingjie, L. Wenjing, Z. Yuansuo, Z. Zhicheng, J. Appl. Polym. Sci. 116, 2674 (2010)Google Scholar
- 12.J. Sun, L. Yao, Q.L. Zhao, J. Huang, R. Song, J. Ma, L.H. He, W. Huang, Y.M. Hao, Front. Mater. Sci. 5, 388 (2011)CrossRefGoogle Scholar
- 13.B. Lu, K. Amanwar, A. Maazouz, H. Zhang, Soft Matter. 12, 3252 (2016)CrossRefGoogle Scholar
- 14.H.R. Allcock, Chemistry and Applications of Polyphosphazenes. (Wiley, Hoboken, 2002)Google Scholar
- 15.H.R. Allcock, Curr. Opin. Solid State Mater. Sci. 10, 231 (2006)CrossRefGoogle Scholar
- 16.B.M. Kelly, D.D. Jamiolkowski, C. De Felice, U.S. Patent No. 9,321,917 (2016)Google Scholar
- 17.S. Bose, M. Mukherjee, C.K. Das, A.K. Saxena, Polym. Compos. 31, 543 (2009)Google Scholar
- 18.S. Bose, C.K. Das, A.K. Saxena, A. Ranjan, J. Appl. Polym. Sci. 119, 1914 (2011)CrossRefGoogle Scholar
- 19.G.C. Nayak, S. Sahoo, S. Das, G. Karthikeyan, C.K. Das, A.K. Saxena, A. Ranjan, J. Appl. Polym. Sci. 124(1), 629 (2012)CrossRefGoogle Scholar
- 20.K.R. Reddy, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169 (2016)CrossRefGoogle Scholar
- 21.K.R. Reddy, K.P. Lee, A.I. Gopalan, A.M. Showkat, Polym. J. 38(4), 349 (2006)CrossRefGoogle Scholar
- 22.V.K.R. Reddy, K.P. Lee, A.I. Gopalan, A.M. Showkat, J. Nanosci. Nanotechnol. 7, 3117 (2007)CrossRefGoogle Scholar
- 23.W. Marashdeh, J.O. Iroh, J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/APP.45372 Google Scholar
- 24.S.H. Choi, D.H. Kim, A.V. Raghu, K.R. Reddy, H. Lee, K.S. Yoon, H.M. Jeong, B.K. Kim, J. Macromol. Sci. R Part B Phys. 51, 197 (2012)CrossRefGoogle Scholar
- 25.M.U. Khan, K.R. Reddy, T. Snguanwongchai, E. Haque, V.G. Gomes, Colloid. Polym. Sci. 294, 1599 (2016)CrossRefGoogle Scholar
- 26.K.R. Reddya, B.C. Sina, K.S. Ryua, J.C. Kimb, H. Chungc, Y. Lee, Synth. Met. 159, 595 (2009)CrossRefGoogle Scholar
- 27.K.R. Reddy et al., Mater. Lett. 62, 1815 (2008)CrossRefGoogle Scholar
- 28.S. Satapathy et al., J. Phys. D 42, 055402 (2009)CrossRefGoogle Scholar
- 29.F.S. Nworie, M.E. Ugwu, S.O. Eluu, C. Ezekwena, J. Chem. Mater. Res. 5, 58 (2016)Google Scholar
- 30.K.P. Singh, A. Mishra, N. Kumar et al., J. Polym. Bull. (2017). https://doi.org/10.1007/s00289-017-2156-2 Google Scholar
- 31.D.Y. Wang, K. Li, H.L.W. Chan, Sens. Actuators. 114, 1 (2004)CrossRefGoogle Scholar
- 32.H. Kawai, Jpn. J. Appl. Phys. 8, 960–975 (1969)CrossRefGoogle Scholar
- 33.M. Abdelaziz, J. Mater. Sci. 24, 2727 (2013)Google Scholar
- 34.D. Yang, H. Xu, W. Yu. et al., J. Mater. Sci. 28, 13006 (2017)Google Scholar
- 35.S.K. Tripathi, A. Gupta, M. Kumari, Bull. Mater. Sci. 35(6), 969 (2012)CrossRefGoogle Scholar
- 36.I.S. Elashmawi, N.A. Hakeem, J. Polym. Eng. Sci. 48(5), 895–901 (2008)CrossRefGoogle Scholar
- 37.D.Y. Wang, K. Li, H.L.W. Chan, Appl. Phys. A 80, 1531 (2005)CrossRefGoogle Scholar