Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction

  • Z. I. Ali
  • O. A. Ghazy
  • G. Meligi
  • H. H. Saleh
  • M. Bekhit
Article
  • 100 Downloads

Abstract

Two approaches in the synthesis of copper nanoparticles (CuNPs), namely the gamma radiolysis and chemical reduction methods were investigated. The XRD analysis illustrated that the chemically prepared CuNPs using ascorbic acid were oxidized partly to cuprous oxide (Cu2O). The radiolytic method provides CuNPs in fully reduced and highly pure state as compared to chemical reduction method. The optimum radiation dose at which the CuNPs was formed at high purity is 300 kGy. Also, the TEM images indicated that the average particle size of the CuNPs using gamma radiolysis method (33.6 nm) was smaller than those obtained by chemical reduction method (39.9 nm). The catalytic activity of CuNPs was evaluated on the reduction of p-nitrophenol (p-NP). The prepared CuNPs by gamma radiolysis method were found to exhibit higher activity than those of conventional chemical reduction.

Keywords

Copper nanoparticles Gamma irradiation Chemical reduction p-Nitrophenol reduction 

Notes

Acknowledgements

This work was funded by the Science & Technology Development Fund (STDF) in Egypt under the Grant Number (6370). The authors would like to thank the STDF for their fund.

References

  1. 1.
    B.S. Fu, M.N. Missaghi, C.M. Downing, M.C. Kung, H.H. Kung, G.M. Xiao, Chem. Mater. 22, 2181–2183 (2010)CrossRefGoogle Scholar
  2. 2.
    J.G.H. Wang, Z.R. Wang, ,Y.P. Shen, T. Liu ,D, H. Ding ,T, Chen, Cata 275, 140–148 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Eliyahu, A. Vaskevich, I. Rubinstein, Thin Solid Films 519, 1661–1666 (2010)CrossRefGoogle Scholar
  4. 4.
    M.L. Kantam, V.S. Jaya, M.J. Lakshmi, B.R. Reddy, B.M. Choudary, S.K. Bhargava, Catal. Commun. 8, 1963–1968 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Magdassi, M. Grouchko, A. Kamyshny, Materials 3, 4626–4638 (2010)CrossRefGoogle Scholar
  6. 6.
    A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, Nanotech. 23(8), 085103 (2012)CrossRefGoogle Scholar
  7. 7.
    D.M. Clifford, C.E. Castano, J.V. Rojas, Radiat. Phys. Chem. 132, 52–64 (2017)CrossRefGoogle Scholar
  8. 8.
    Z.I. Ali, O.A. Ghazy, G. Meligi, H.H. Saleh, M. Bekhit, Adv. Polym. Technol. (2016).  https://doi.org/10.1002/adv.21675 Google Scholar
  9. 9.
    A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawaleb, S.H. Pawar, Appl. Surf. Sci. 264, 598–604 (2013)CrossRefGoogle Scholar
  10. 10.
    N.A. Dhas, C.P. Rajcp, A. Gedanken, Chem. Mater. 10(5), 1446–1452 (1998)CrossRefGoogle Scholar
  11. 11.
    K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, Am. Chem. Soc. 123(32), 7797–7803 (2001)CrossRefGoogle Scholar
  12. 12.
    I. Lisiecki, M.P. Pileni, Am. Chem. Soc. 115(10), 3887–3896 (1993)CrossRefGoogle Scholar
  13. 13.
    R.V. Kumar, Y. Mastai, Y. Diamant, A. Gedanken, Mater. Chem. 11(4), 1209–1213 (2001)CrossRefGoogle Scholar
  14. 14.
    M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh, Phys. Chem. B 103, 6851–6857 (1999)CrossRefGoogle Scholar
  15. 15.
    G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, G. Martra, Chem. Mater. 14(3), 1183–1186 (2002)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, Y. Bando, Adv. Mater. 15(3), 303–305 (2003)CrossRefGoogle Scholar
  17. 17.
    H. Ohde, F. Hunt, C.M. Wai, Chem. Mater. 13(11), 4130–4135 (2001)CrossRefGoogle Scholar
  18. 18.
    H.-J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971–1977 (2013)Google Scholar
  19. 19.
    S.S. Joshi, S.F. Patil, V. Iyer, S. Mahamuni, Nanostruct. Mater. 10(7), 1135–1144 (1998)CrossRefGoogle Scholar
  20. 20.
    B.I. Kharisov, O.V. Kharissova, U.O. Méndez, Radiation Synthesis of Materials and Compounds, vol. 451 (CRC Press, Talyor & Francis Group, Boca Raton, 2013)CrossRefGoogle Scholar
  21. 21.
    J. Belloni, Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996)CrossRefGoogle Scholar
  22. 22.
    A. Henglein, Phys. Chem. 97, 5457–5471 (1993)CrossRefGoogle Scholar
  23. 23.
    A. Henglein, Electronics of colloidal nanometer particles. Phys. Chem. 99, 903–913 (1995)CrossRefGoogle Scholar
  24. 24.
    J. Belloni, Catal. Today 113, 141–156 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Marignier, J. Belloni, M. Delcourt, J. Chevalier, Nature 317, 344–345 (1985)CrossRefGoogle Scholar
  26. 26.
    K.P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, Y.C. Nho, Compos. Sci. Technol 67, 811–816 (2007)CrossRefGoogle Scholar
  27. 27.
    T. Lai, H.G. Park, S.H. Choi, Mater. Chem. Phys. 105, 325–330 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Naghavi, E. Saion, K. Rezaee, W.M. Yunus, Radiat. Phys. Chem. 79, 1203–1208 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Abedini, A.R. Daud, M.A. Abdul Hamid, N.K. Othman, E. Saion, Nanoscale Res. Lett. 8, 474 (2013)CrossRefGoogle Scholar
  30. 30.
    J.V. Rojas, C.H. Castano, Radiat. Phys. Chem. 99, 1–5 (2014)CrossRefGoogle Scholar
  31. 31.
    K.B. Narayanan, N. Sakthivel, Bioresour. Technol. 102, 10737–10740 (2011)CrossRefGoogle Scholar
  32. 32.
    T.-L. Lai, K.-F. Yong, J.-W. Yu, J.-H. Chen, Y.-Y. Shu, C.-B. Wang, J. Hazard. Mater. 185, 366–372 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, J. Hazard. Mater. 201–202, 250–259 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Feng, L. Su, ,Y. Ma, C. Ren, ,Q. Guo, X. Chen, Chem. Eng. J. 221, 16–24 (2013)CrossRefGoogle Scholar
  35. 35.
    N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Coord. Chem. Rev. 353, 1–57 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816–854, (2017)CrossRefGoogle Scholar
  37. 37.
    M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. Varma, Chem. Rev. 116, 3722–3811 (2016)CrossRefGoogle Scholar
  38. 38.
    L. Qing-Ming, T. Yasunami, K. Kuruda, M. Okido, Trans. Nonferr. Met. Soc. China 22, 2198–2203 (2012)CrossRefGoogle Scholar
  39. 39.
    F. Zhou, R. Zhou, X. Hao, X. Wu, W. Rao, Y. Chen, D. Gao, Radiat. Phys. Chem. 77, 169–173 (2008)CrossRefGoogle Scholar
  40. 40.
    L.Q. Pham, J.H. Sohn, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, Radiat. Phys. Chem. 80, 638–642 (2011)CrossRefGoogle Scholar
  41. 41.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley Pub. Co. Inc., London, MA, 1978), p. 102Google Scholar
  42. 42.
    E. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)CrossRefGoogle Scholar
  43. 43.
    J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, K. Sharma, Mater. Chem. Phys. 134, 1121–1126 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Kuroda, T. Ishida, M. Haruta, Mol. Catal. A 298, 7–11 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Z. I. Ali
    • 1
  • O. A. Ghazy
    • 1
  • G. Meligi
    • 2
  • H. H. Saleh
    • 1
  • M. Bekhit
    • 1
  1. 1.Radiation Chemistry Department, National Center for Radiation Research and Technology (NCRRT)Egyption Atomic Energy Authority (EAEA)CairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations