Advertisement

Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction

Abstract

Two approaches in the synthesis of copper nanoparticles (CuNPs), namely the gamma radiolysis and chemical reduction methods were investigated. The XRD analysis illustrated that the chemically prepared CuNPs using ascorbic acid were oxidized partly to cuprous oxide (Cu2O). The radiolytic method provides CuNPs in fully reduced and highly pure state as compared to chemical reduction method. The optimum radiation dose at which the CuNPs was formed at high purity is 300 kGy. Also, the TEM images indicated that the average particle size of the CuNPs using gamma radiolysis method (33.6 nm) was smaller than those obtained by chemical reduction method (39.9 nm). The catalytic activity of CuNPs was evaluated on the reduction of p-nitrophenol (p-NP). The prepared CuNPs by gamma radiolysis method were found to exhibit higher activity than those of conventional chemical reduction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    B.S. Fu, M.N. Missaghi, C.M. Downing, M.C. Kung, H.H. Kung, G.M. Xiao, Chem. Mater. 22, 2181–2183 (2010)

  2. 2.

    J.G.H. Wang, Z.R. Wang, ,Y.P. Shen, T. Liu ,D, H. Ding ,T, Chen, Cata 275, 140–148 (2010)

  3. 3.

    S. Eliyahu, A. Vaskevich, I. Rubinstein, Thin Solid Films 519, 1661–1666 (2010)

  4. 4.

    M.L. Kantam, V.S. Jaya, M.J. Lakshmi, B.R. Reddy, B.M. Choudary, S.K. Bhargava, Catal. Commun. 8, 1963–1968 (2007)

  5. 5.

    S. Magdassi, M. Grouchko, A. Kamyshny, Materials 3, 4626–4638 (2010)

  6. 6.

    A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, Nanotech. 23(8), 085103 (2012)

  7. 7.

    D.M. Clifford, C.E. Castano, J.V. Rojas, Radiat. Phys. Chem. 132, 52–64 (2017)

  8. 8.

    Z.I. Ali, O.A. Ghazy, G. Meligi, H.H. Saleh, M. Bekhit, Adv. Polym. Technol. (2016). https://doi.org/10.1002/adv.21675

  9. 9.

    A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawaleb, S.H. Pawar, Appl. Surf. Sci. 264, 598–604 (2013)

  10. 10.

    N.A. Dhas, C.P. Rajcp, A. Gedanken, Chem. Mater. 10(5), 1446–1452 (1998)

  11. 11.

    K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, Am. Chem. Soc. 123(32), 7797–7803 (2001)

  12. 12.

    I. Lisiecki, M.P. Pileni, Am. Chem. Soc. 115(10), 3887–3896 (1993)

  13. 13.

    R.V. Kumar, Y. Mastai, Y. Diamant, A. Gedanken, Mater. Chem. 11(4), 1209–1213 (2001)

  14. 14.

    M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh, Phys. Chem. B 103, 6851–6857 (1999)

  15. 15.

    G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, G. Martra, Chem. Mater. 14(3), 1183–1186 (2002)

  16. 16.

    Z. Liu, Y. Bando, Adv. Mater. 15(3), 303–305 (2003)

  17. 17.

    H. Ohde, F. Hunt, C.M. Wai, Chem. Mater. 13(11), 4130–4135 (2001)

  18. 18.

    H.-J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971–1977 (2013)

  19. 19.

    S.S. Joshi, S.F. Patil, V. Iyer, S. Mahamuni, Nanostruct. Mater. 10(7), 1135–1144 (1998)

  20. 20.

    B.I. Kharisov, O.V. Kharissova, U.O. Méndez, Radiation Synthesis of Materials and Compounds, vol. 451 (CRC Press, Talyor & Francis Group, Boca Raton, 2013)

  21. 21.

    J. Belloni, Curr. Opin. Colloid Interface Sci. 1, 184–196 (1996)

  22. 22.

    A. Henglein, Phys. Chem. 97, 5457–5471 (1993)

  23. 23.

    A. Henglein, Electronics of colloidal nanometer particles. Phys. Chem. 99, 903–913 (1995)

  24. 24.

    J. Belloni, Catal. Today 113, 141–156 (2006)

  25. 25.

    J. Marignier, J. Belloni, M. Delcourt, J. Chevalier, Nature 317, 344–345 (1985)

  26. 26.

    K.P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, Y.C. Nho, Compos. Sci. Technol 67, 811–816 (2007)

  27. 27.

    T. Lai, H.G. Park, S.H. Choi, Mater. Chem. Phys. 105, 325–330 (2007)

  28. 28.

    K. Naghavi, E. Saion, K. Rezaee, W.M. Yunus, Radiat. Phys. Chem. 79, 1203–1208 (2010)

  29. 29.

    A. Abedini, A.R. Daud, M.A. Abdul Hamid, N.K. Othman, E. Saion, Nanoscale Res. Lett. 8, 474 (2013)

  30. 30.

    J.V. Rojas, C.H. Castano, Radiat. Phys. Chem. 99, 1–5 (2014)

  31. 31.

    K.B. Narayanan, N. Sakthivel, Bioresour. Technol. 102, 10737–10740 (2011)

  32. 32.

    T.-L. Lai, K.-F. Yong, J.-W. Yu, J.-H. Chen, Y.-Y. Shu, C.-B. Wang, J. Hazard. Mater. 185, 366–372 (2011)

  33. 33.

    J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, J. Hazard. Mater. 201–202, 250–259 (2012)

  34. 34.

    J. Feng, L. Su, ,Y. Ma, C. Ren, ,Q. Guo, X. Chen, Chem. Eng. J. 221, 16–24 (2013)

  35. 35.

    N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Coord. Chem. Rev. 353, 1–57 (2017)

  36. 36.

    D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816–854, (2017)

  37. 37.

    M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. Varma, Chem. Rev. 116, 3722–3811 (2016)

  38. 38.

    L. Qing-Ming, T. Yasunami, K. Kuruda, M. Okido, Trans. Nonferr. Met. Soc. China 22, 2198–2203 (2012)

  39. 39.

    F. Zhou, R. Zhou, X. Hao, X. Wu, W. Rao, Y. Chen, D. Gao, Radiat. Phys. Chem. 77, 169–173 (2008)

  40. 40.

    L.Q. Pham, J.H. Sohn, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, Radiat. Phys. Chem. 80, 638–642 (2011)

  41. 41.

    B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley Pub. Co. Inc., London, MA, 1978), p. 102

  42. 42.

    E. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)

  43. 43.

    J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, K. Sharma, Mater. Chem. Phys. 134, 1121–1126 (2012)

  44. 44.

    K. Kuroda, T. Ishida, M. Haruta, Mol. Catal. A 298, 7–11 (2009)

Download references

Acknowledgements

This work was funded by the Science & Technology Development Fund (STDF) in Egypt under the Grant Number (6370). The authors would like to thank the STDF for their fund.

Author information

Correspondence to M. Bekhit.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, Z.I., Ghazy, O.A., Meligi, G. et al. Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction. J Inorg Organomet Polym 28, 1195–1205 (2018). https://doi.org/10.1007/s10904-018-0780-4

Download citation

Keywords

  • Copper nanoparticles
  • Gamma irradiation
  • Chemical reduction
  • p-Nitrophenol reduction