Enhancement the Photocatalytic and Biological Activity of Nano-sized ZnO Using Hyperbranched Polyester
- 25 Downloads
Abstract
This work represents the synthesis of nanocomposites based hyperbranched polyester (HPES) and ZnO nanorods (ZnO NRs) as photocatalysts. The nanorods were prepared by thermal treatment of Zn acetate. The nanocomposites were synthesized either by adding of the nano-rods polycondensation reaction (in-situ method, I-HPES/ZnO), or by ex-situ mixing technique (E-HPES/ZnO). The as-prepared ZnO NRs and their nanocomposites were characterized by X-ray diffraction (XRD), surface area (SBET), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and UV–Viz. absorption. Transmission electron microscope (TEM) revealed that the formed NRs are lower than 40 nm in diameter and higher than 100 nm in length. Photocatalytic investigations clarified that modified ZnO-NRs acquire higher reactivity after modification with HPES. The highest photocatalytic degradation were given by E-HPES/ZnO. Durability test proved the feasibility of using the formed nanocomposites several times in the degradation system on the other hand, ZnO suffered a pronounced decrease in the photocatalytic activity. Antibacterial activity emphasized that the obtained nanocomposites have inhibition effect against harmful microorganisms higher than ZnO NRs.
Keywords
Photocatalysis ZnO nanorods Hyperbranched polyester AntibacterialNotes
Acknowledgements
Financial support from National Research Centre (NRC), In-house Project No. 11090113 is gratefully acknowledged.
References
- 1.A. Hu, A. Apblett (eds.), Nanotechnology for Water Treatment and Purification (Springer, Cham, 2014)Google Scholar
- 2.A.S. Adeleye et al., Chem. Eng. J. 286, 640 (2016)CrossRefGoogle Scholar
- 3.S. Baruah, J. Dutta, Chem. Lett. 7, 1 (2009)CrossRefGoogle Scholar
- 4.A. Sugunan, J. Dutta, Pollution Treatment, Remediation, and Sensing. In Nanotechnology, vol. 3, ed. by K. Harald (Wiley, Weinheim, 2008)Google Scholar
- 5.S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)CrossRefGoogle Scholar
- 6.A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
- 7.S. Baruah, S.K. Pal, J. Dutta, Nanosci. Nanotechnol. Asia 2, 90 (2012)CrossRefGoogle Scholar
- 8.U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C. 9, 1 (2008)CrossRefGoogle Scholar
- 9.S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 12, 013004 (2011)CrossRefGoogle Scholar
- 10.S.-Y. Lee, S.-J. Park, J. Ind. Eng. Chem. 19, 1761 (2013)CrossRefGoogle Scholar
- 11.P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Thin Solid Films 520, 5561 (2012)CrossRefGoogle Scholar
- 12.J. Kim, K.A. Yong, J. Nanoparticle Res. 14, 1 (2012)Google Scholar
- 13.A.A. Khodja, T. Sehili, J.F. Pihichowski, P. Boule, J. Photochem. Photobiol. A 141, 231 (2001)CrossRefGoogle Scholar
- 14.H. Agarwal, S.V. Kumar, S. Rajeshkumar, Resour. Effic. Technol. 3, 406 (2017)CrossRefGoogle Scholar
- 15.D.P. Singh, Sci. Adv. Mater. 2, 245 (2010)CrossRefGoogle Scholar
- 16.T. Ipeksac, F. Kaya, C. Kaya, Mater. Lett. 100, 11 (2013)CrossRefGoogle Scholar
- 17.G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J.H. Li, J. Phys. Chem. C 112, 8850 (2008)CrossRefGoogle Scholar
- 18.G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
- 19.N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Appl. Phys. A 124, 710 (2018)CrossRefGoogle Scholar
- 20.K. Omri, O.M. Lemine, L.El Mir, Ceram. Int. 43, 6585 (2017)CrossRefGoogle Scholar
- 21.K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B 537, 167 (2018)CrossRefGoogle Scholar
- 22.I. Poulios, D. Makri, X. Prohaska, Global NEST Int. J. 1, 55 (1999)Google Scholar
- 23.E.R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28, 786 (1994)CrossRefGoogle Scholar
- 24.M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812 (2002)CrossRefGoogle Scholar
- 25.A. Akyol, M. Bayramoglu, J. Hazard. Mater. B 124, 241 (2005)CrossRefGoogle Scholar
- 26.N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)CrossRefGoogle Scholar
- 27.R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzi, G. Mascolo, G. Agostiano, Appl. Catal. B 60, 1 (2005)CrossRefGoogle Scholar
- 28.Z.Y. He, Y.G. Li, Q.H. Zhang, H.Z. Wang, Appl. Catal. B 93, 376 (2009)CrossRefGoogle Scholar
- 29.A. Sharma, P. Rao, R.P. Mathur, S.C. Ameta, J. Photochem. Photobiol. A 86, 197 (1995)CrossRefGoogle Scholar
- 30.C. Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, J. Mol. Catal. A 310, 159 (2009)CrossRefGoogle Scholar
- 31.R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227, 312 (2004)CrossRefGoogle Scholar
- 32.S. Colis, H. Bieber, S. Begin-Colin, G. Schmerber, C. Leuvrey, A. Dinia, Chem. Phys. Lett. 422, 529 (2006)CrossRefGoogle Scholar
- 33.R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194 (2008)CrossRefGoogle Scholar
- 34.V.E. Podasca, T. Buruiana, E.C. Buruiana, Appl. Surf. Sci. 377, 262 (2016)CrossRefGoogle Scholar
- 35.A. Di Mauro, M. Cantarella, G. Nicotra et al., Sci. Rep. 7, 40895 (2016). https://doi.org/10.1038/srep40895 CrossRefGoogle Scholar
- 36.B.I. Voit, A. Lederer, Chem. Rev. 109, 5924 (2009)CrossRefGoogle Scholar
- 37.Z. Shi, Y. Zhou, D. Yan, Macromol. Rapid Commun. 29, 412 (2008)CrossRefGoogle Scholar
- 38.H.A. Mohamed, M.H. AbdelRehim, Anti-Corros. Methods Mater. 62, 95 (2015)CrossRefGoogle Scholar
- 39.A.F. Ghanem, A. El-Gendi, M.H. AbdelRehim, K.M. El-Khatib, RSC Adv. 6, 32245 (2016)CrossRefGoogle Scholar
- 40.W. Zhou, C. Xu, H. Huang, J. Nanoelectron. Optoelectron. 12, 196 (2017)CrossRefGoogle Scholar
- 41.A.F. Ghanem, A.A. Badawy, N. Ismail, Z. Rayn Tian, M.H. Abdel Rehim, A. Rabia, Appl. Catal. A 472, 191 (2014)CrossRefGoogle Scholar
- 42.B.D. Cullity, Publishing Cos, 2nd edn. (Wesley, Reading,, 1978), p. 102Google Scholar
- 43.F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, San Diego, 1999), p. 19Google Scholar
- 44.A.K. Zak, W.H. Majid, M. Darroudi, R. Yousefi, Mater. Lett. 65, 70 (2011)CrossRefGoogle Scholar
- 45.A.A. Badawy, Sh.M. Ibrahim, Int. Res. J. Pure Appl. Chem. 14, 1 (2017)CrossRefGoogle Scholar
- 46.A. Khalyavina, F. Schallausky, H. Komber, M.Al Samman, W. Radke, A. Lederer, Macromolecules. 43, 3268 (2010)CrossRefGoogle Scholar
- 47.C.-C. Lin, Y.-Y. Li, Mater. Chem. Phys. 113, 334 (2009)CrossRefGoogle Scholar
- 48.R. Vasireddi, B. Javvaji, H. Vardhan, D.R. Mahapatra, G.M. Hegde, J. Mater. Sci. 52, 2007 (2017)CrossRefGoogle Scholar
- 49.L.T. Jule, F.B. Dejene, A.G. Ali, K.T. Roro, A. Hegazy, N.K. Allam, E. El Shenawy, J. Alloys Compds. 687, 920 (2016)CrossRefGoogle Scholar
- 50.X. Zhang et al., Sci. Rep. 4, 4596 (2014)CrossRefGoogle Scholar
- 51.M. Arakha, M. Saleem, B.C. Mallick, S. Jha, Sci. Rep. 5, 9578 (2015)CrossRefGoogle Scholar
- 52.G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward, J. Am. Chem. Soc. 74(8), 2125 (1952)CrossRefGoogle Scholar
- 53.P.L. Pauson, J. Organomet. Chem. 637–639, 3 (2001)Google Scholar
- 54.N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)CrossRefGoogle Scholar
- 55.I. Restrepoa, P. Floresa, S. Rodríguez-Llamazares, Polym. Plast. Technol. Eng. 58, 105 (2019). https://doi.org/10.1080/03602559.2018.1466168
- 56.P. Bazant, T. Sedlacek, I. Kuritka, D. Podlipny, P. Holcapkova, Materials 11, 363 (2018)CrossRefGoogle Scholar
- 57.S.-W. Zhao, C.-R. Guo, Y.-Z. Hu, Y.-R. Guo, Q.-J. Pan, Open Chem. 16, 9 (2018)CrossRefGoogle Scholar
- 58.Y. Liu et al., J. Appl. Microbiol. 107, 1193 (2009)CrossRefGoogle Scholar
- 59.T. Xu, C.S. Xie, Prog. Org. Coat. 46, 297 (2003)CrossRefGoogle Scholar
- 60.O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001)CrossRefGoogle Scholar
- 61.Z. Emami-Karvani, P. Chehrazi, African J. Microbiol. Res. 5, 1368 (2011)Google Scholar
- 62.K.H. Tam, A.B. Djurišić, C.M.N. Chan, Y.Y. Xi et al., Thin Solid Films 516, 6167 (2008)CrossRefGoogle Scholar
- 63.R. Sinha, R. Karan, A. Sinha, S. Khare, Bioresour. Technol. 102, 1516 (2011)CrossRefGoogle Scholar
- 64.M.H. Abdel Rehim, M.A. El-Samahy, A.A. Badawy, M.E. Mohram, Carbohydr. Polym. 148, 194 (2016)CrossRefGoogle Scholar