The Effect of the Temperature–Time Mode of Crystallization on the Morphology and Thermal Properties of Nanocomposites Based on Polypropylene and Magnetite (Fe3O4)

  • M. A. RamazanovEmail author
  • A. M. Maharramov
  • F. V. Hajiyeva
  • H. A. Shirinova
  • Luca Di Palma


In the present study, the influence of the temperature–time mode of crystallization (TTC) on the morphology and thermal properties of PP/Fe3O4 nanocomposite materials was investigated. The morphology of the nanocomposites prepared in different TTC mode was studied by atomic force microscope. AFM study shows that the root mean square roughness of samples is 90–95, 50, 21 nm for PP/Fe3O4@20, PP/Fe3O4@200 and PP/Fe3O4@20000 respectively. Thermo gravimetric analysis was employed to investigate the thermal stability of PP/Fe3O4 nanocomposites obtained applying different TTC modes. It was found that thermal stability of water-cooled nanocomposite samples (PP/Fe3O4@200) is higher than the thermal stability of samples obtained with other two modes. Crystallization and melting behaviors of nanocomposite samples prepared in different TTC mode have been studied with DSC method and the degree of crystallinity of samples was calculated. It was found that, degree of crystalization decreases with increasing of cooling rate. The XRD patterns of samples produced in different TTC modes also correlate well with this result.


Polypropylene Magnetite Thermal properties 

Supplementary material

10904_2017_767_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)


  1. 1.
    A.A. Eliseev, A.V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010)Google Scholar
  2. 2.
    A.M. Maharramov, M.A. Ramazanov, F.V. Hajiyeva, S.Q. Aliyeva, Formation of nanoporous structures of polypropylene irradiated by high energy heavy ions. J. Nanomed. Nanotechnol. 3, 5 (2012)CrossRefGoogle Scholar
  3. 3.
    А.M. Мagerramov, М.А. Ramazanov, F.V. Hajiyeva, V.М. Guliyeva, Investigation of structure and electrophysical properties of nanocomposite materials on the basis of zirconium dioxiden in isotactic polypropylene matrix. J. Ovonic Res. 9(5), 133 (2013)Google Scholar
  4. 4.
    R.-M. Wang, S.-R. Zheng, Y.-P. Zheng, Polymer Matrix Composites and Technolgy (Woodhead publishing, Philadelphia, 2011)CrossRefGoogle Scholar
  5. 5.
    H. Shirinova, L. Di Palma, F. Sarasini, J. Tirillò, M.A. Ramazanov, F. Hajiyeva, D. Sannino, M. Polichetti, A. Galluzzi, Synthesis and characterization of magnetic nanocomposites for environmental remediation. Chem. Eng. Trans. 47, 103–108 (2016). Google Scholar
  6. 6.
    M.A. Ramazanov, F.V. Hajiyeva, A.M. Maharramov, L. di Palmab, D. Sanninoc, M. Takafuji, H.M. Mammadov, U.A. Hasanova, H.A. Shirinova, Z.A. Bayramova, New magnetic polymer nanocomposites on the basis ofisotactic polypropylene and magnetite nanoparticles for adsorption of ultra high frequency electromagnetic waves. Polym. Plast. Technol. Eng. J. (2017). Google Scholar
  7. 7.
    A.M. Maharramov, M.A. Ramazanov, R.A. Alizade, P.B. Asilbeyli, Structure and dielectric properties of nanocomposites on the bas of polyethylene with Fe3O4 nanopatricles. Digest J. Nanomater. Biostruct. 8(4), 1447 (2013)Google Scholar
  8. 8.
    МА Ramazanov, R.А. Ali-Zade, P.B. Agakishieva, Structure and magnetic properties of nanocomposites, on the basis PE + Fe3O4 и PVDF + Fe3O4. Digest J. Nanomater. Biostruct. 5(3), 727 (2010)Google Scholar
  9. 9.
    A.M. Maharramova, M.A. Ramazanov, L. Di Palma, F.V. Hajiyeva, H.А. Shirinova, U.A. Hasanova, Role of structure of the Pp/magnetite nanocomposites on their thermal properties. Chem. Eng. Trans. 60, (2017)Google Scholar
  10. 10.
    M.A. Ramazanov, A.S. .Huseynova, N.A. Eyubova, S.A. Abasov, Thermal properties and changes in phase structure of PP+MnO2 based composites j. Optoelectron. Adv. Mater. Rapid Commun. (OAM-RC) 4(12), 2003 (2010)Google Scholar
  11. 11.
    M.A. Ramazanov, A.M. Maharramov, F.V. Hajiyeva, F. Kirac, O. Guven, Morphology, mechanical and thermal properties of nanocomposites based on isotactic polypropylene and zirconium dioxide nanoparticles. Romanian J. Mater. 46(3), 375–382 (2016)Google Scholar
  12. 12.
    I.I. Perepechko,‎ A. Beknazarov Introduction to Polymer Physics. Chemistry (Mir Publishers, Moscow, 1978)Google Scholar
  13. 13.
    D.l. Bower, W.F. Maddams, The Vibrational Spectroscopy of Polymers (Cambridge University Press, Cambridge, 1992)Google Scholar
  14. 14.
    H.N. Türkçü, Investigation of the crystallinity and orientation of polypropylene with respect to temperature changes using FT-IR, XRD, AND Raman techniques. (2004)Google Scholar
  15. 15.
    A. Bava, F. Cappellini, E. Pedretti, F. Rossi, E. Caruso, E. Vismara, M. Chiriva-Internati, G. Bernardini, R. Gornati, Heparin and carboxymethylchitosan metal nanoparticles: an evaluation of their cytotoxicity. Biomed. Res. Int. (2013). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • M. A. Ramazanov
    • 1
    Email author
  • A. M. Maharramov
    • 1
  • F. V. Hajiyeva
    • 1
  • H. A. Shirinova
    • 1
  • Luca Di Palma
    • 2
  1. 1.Physics FacultyBaku State UniversityBakuAzerbaijan
  2. 2.Department of Chemical Engineering Materials EnvironmentSapienza University-INSTM, UdR Uniroma1 SapienzaRomaItaly

Personalised recommendations