Improved Electro-optical Performance of OLEDs Using PdCo Alloy Nanoparticles Supported on Polypropylenimine Dendrimer–Grafted Graphene

  • Mohammad Janghouri
  • Ezeddin Mohajerani
  • Hadi Hosseni
Article
  • 59 Downloads

Abstract

We fabricated organic light emitting diodes (OLEDs) with PdCo alloy nanoparticles supported on polypropylenimine dendrimer–grafted graphene (PdCo/PPI–g-G) that was doped at different concentrations (0, 0.02, 0.03, 0.06 and 2 wt%) in a poly(3,4-ethylene dioxythiophene): polystyrene sulfonic acid (PEDOT:PSS) as a host layer. PdCo PPI–g-G and PEDOT:PSS were studied as hole injection layers in OLEDs. The efficiency of hole injection from the anode is strongly dependent on the concentration of the PdCo/PPI–g-G. While a graphene oxide and pure PEDOT:PSS layer leads to higher driving voltage and decreased luminescence efficiency. PdCo/PPI–g-G of 0.02 wt% noticeably enhanced the hole injection and resulted in lower turn-on voltage, increased luminance, and current efficiencies. The 0.02 wt% PdCo/PPI–g-G based device has also a luminance of 3705 cd/m2 and maximum efficiency of 1.9 cd/A at 13 V which are the highest values among other PdCo/ PPI–g-G based devices.

Keywords

OLEDs PdCo/PPI–g-G Hole injection Luminescence efficiency Graphene oxide 

Notes

Acknowledgements

Authors would like to thank Urmia University of Technology and Shahid Beheshti University for its support.

References

  1. 1.
    M. Janghouri, H. Hosseini, J. Inorg. Organomet. Polym. 27, 1800 (2017)CrossRefGoogle Scholar
  2. 2.
    S.A. Carter, J.C. Scott, P.J. Brock, Appl. Phys. Lett. 71, 1145 (1997)CrossRefGoogle Scholar
  3. 3.
    A.M. Hussain, B. Neppolian, S.H. Kim, J.Y. Kim, H.-C. Choi, K. Lee, S.-J. Park, A.J. Heeger, Appl. Phys. Lett. 94, 073306 (2009)CrossRefGoogle Scholar
  4. 4.
    S.A. Choulis, M.K. Mathai, V.E. Choong, Appl. Phys. Lett. 88, 213503 (2006)CrossRefGoogle Scholar
  5. 5.
    B. Riedel, J. Hauss, M. Aichholz, A. Gall, U. Lemmer, M. Gerken, Org. Electron. 11, 1172 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Qian, Y. Zheng, K.R. Choudhury et al., Nano Today 5, 384 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Xie, M. Gong, T.A. Shastry, J. Lohrman, M.C. Hersam, S. Ren, Adv. Mater. 25, 3433 (2013)CrossRefGoogle Scholar
  8. 8.
    C.T.G. Smith, R.W. Rhodes, M.J. Beliatis, K.D.G.I. Jayawardena, L.J. Rozanski, C.A. Mills, S.R.P. Silva, Appl. Phys. Lett. 105, 073304 (2014)CrossRefGoogle Scholar
  9. 9.
    C.-H. Lin, K.-T. Chen, J.-R. Ho, J.-W.J. Cheng, R. Chien-Chao Tsiang, J. Nanotechnol. 2, 4044 (2012)Google Scholar
  10. 10.
    H. Jiang, Y. Zhou, B.S. Ooi, Y. Chen, T. Wee, Y.L. Lam, J. Huang, S. Liu, Thin Solid Films 363, 25 (2000).CrossRefGoogle Scholar
  11. 11.
    Z.B. Deng, X.M. Ding, S.T. Lee, W.A. Gambling, Appl. Phys. Lett. 74, 2227 (1999)CrossRefGoogle Scholar
  12. 12.
    Z.F. Zhang, Z.B. Deng, C.J. Liang, M.X. Zhang, D.H. Xu, Displays 24, 231 (2003)CrossRefGoogle Scholar
  13. 13.
    I.M. Chan, F.C. Hong, Thin Solid Films 450, 304 (2004)CrossRefGoogle Scholar
  14. 14.
    W. Hu, K. Manabe, T. Furukawa, M. Matsumura, Appl. Phys. Lett. 80, 2640 (2002)CrossRefGoogle Scholar
  15. 15.
    C.C. Oey, A.B. Djurixic, C.Y. Kwong, C.H. Cheung, W.K. Chan, J.M. Nunzi, P.C. Chui, Thin Solid Films 492, 253 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Gyoutoku, S. Hara, T. Komatsu, M. Shirinashihama, H. Iwanaga, K. Sakanoue, Synth. Met. 91, 73 (1997)CrossRefGoogle Scholar
  17. 17.
    Y. Shen, D.B. Jacobs, G.G. Malliaras, G. Koley, M.G. Spencer, A. Ioannidis, Adv. Mater. 13, 1234 (2001)CrossRefGoogle Scholar
  18. 18.
    S.A. Van Slyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996)CrossRefGoogle Scholar
  19. 19.
    F. Nuesch, M. Carrara, M. Schaer, D.B. Romero, L. Zuppiroli, Chem. Phys. Lett. 347, 311 (2001)CrossRefGoogle Scholar
  20. 20.
    P.N.M. dos Anjos, H. Aziz, N.-X. Hu, Z.D. Popovic, Org. Electron. 3, 9 (2002)CrossRefGoogle Scholar
  21. 21.
    F. Li, H. Tang, J. Shinar, O. Resto, S.Z. Weisz, Appl. Phys. Lett. 70, 2741 (1997)CrossRefGoogle Scholar
  22. 22.
    J. Lee, B.J. Jung, J.I. Lee, H.Y. Chu, L.M. Do, H.K. Shim, J. Mater. Chem. 12, 3494 (2002)CrossRefGoogle Scholar
  23. 23.
    Y. Yang, A.J. Heeger, Appl. Phys. Lett. 64, 1245 (1994)CrossRefGoogle Scholar
  24. 24.
    C.-M. Hsu, W.-T. Wu, Appl. Phys. Lett. 85, 840 (2004)CrossRefGoogle Scholar
  25. 25.
    L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, Appl. Phys. Lett. 77, 1093 (2000)CrossRefGoogle Scholar
  26. 26.
    J.-Y. Kim, M. Kim, H. Kim, J. Joo, J.-H. Choi, Opt. Mater. 21, 147 (2002)CrossRefGoogle Scholar
  27. 27.
    P. Fournet, J.N. Coleman, B. Lahr, A. Drury, W.J. Blau, D.F. O’Brien, H.-H. Ho¨rhold, J. Appl. Phys. 90, 969 (2001)CrossRefGoogle Scholar
  28. 28.
    H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee, Synth. Met. 116, 369 (2001)CrossRefGoogle Scholar
  29. 29.
    S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, Adv. Mater. 10, 1091 (1998)CrossRefGoogle Scholar
  30. 30.
    N.N. Dinh, L.H. Chi, T.T.C. Thuy, T.Q. Trung, V.-V. Truong, J. Appl. Phys. 105, 093518 (2009)CrossRefGoogle Scholar
  31. 31.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Janghouri, J. Electron. Mater. 46, 5635 (2017)CrossRefGoogle Scholar
  33. 33.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  34. 34.
    X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2007)CrossRefGoogle Scholar
  35. 35.
    H.A. Becerill, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)CrossRefGoogle Scholar
  36. 36.
    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)CrossRefGoogle Scholar
  37. 37.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8, 3137 (2008)CrossRefGoogle Scholar
  38. 38.
    J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, B.H. Houston, Nano Lett. 8, 3441 (2008)CrossRefGoogle Scholar
  39. 39.
    G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)CrossRefGoogle Scholar
  41. 41.
    C.G. -Navarro, T.R. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)CrossRefGoogle Scholar
  42. 42.
    A.B. Kaiser, C. Gomez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, Nano Lett. 9, 1787 (2009)CrossRefGoogle Scholar
  43. 43.
    S. Sahoo, J.F. Scott, A.K. Arora, S. Ram, Katiyar, Cryst. Growth Des. 11, 3642 (2011)CrossRefGoogle Scholar
  44. 44.
    J.O. Hwang, D.H. Lee, J.Y. Kim, T.H. Han, B.H. Kim, M. Park, K. No, S.O. Kim, J. Mater. Chem. 21, 3432 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003)CrossRefGoogle Scholar
  46. 46.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  47. 47.
    O. Akhavan, Carbon 49, 11 (2011)CrossRefGoogle Scholar
  48. 48.
    T. Virgili, D.G. Lidzey, D.D.C. Bradley, Adv. Mater. 12, 58 (2000)CrossRefGoogle Scholar
  49. 49.
    P.A. Lane, L.C. Palilis, D.F. O’Brien,C. Giebeler, A.J. Cadby, D.G. Lidzey, A.L. Campbell, W. Blau, D.D.C. Bradley, Phys. Rev. B 63, 235206 (2001)CrossRefGoogle Scholar
  50. 50.
    Z. Ma, P. Sonar, Z.-K. Chen, Curr. Org. Chem. 14, 2034 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, Org. Electron. 9, 609 (2008)CrossRefGoogle Scholar
  52. 52.
    Y. Sato, S. Ichinosawa, H. Kanai, IEEE J. Sel. Top. Quantum Electron. 4, 40 (1998)CrossRefGoogle Scholar
  53. 53.
    A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109, 897Google Scholar
  54. 54.
    C.-G. Zhen, Y.-F. Dai, W.-J. Zeng, Z. Ma, Z.-K. Chen, J. Kieffer, Adv. Funct. Mater. 21, 699 (2011)CrossRefGoogle Scholar
  55. 55.
    J. Wang, W. Wan, H. Jiang, Y. Gao, X. Jiang, H. Lin, W. Zhao, J. Hao, Org. Lett. 12, 3874Google Scholar
  56. 56.
    D. Thirion, J. Rault-Berthelot, L. Vignau, C. Poriel, Org. Lett. 13, 4418 (2011)CrossRefGoogle Scholar
  57. 57.
    N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini, J. Rault-Berthelot, Org. Lett. 12, 452 (2010)Google Scholar
  58. 58.
    A.L. Fischer, K.E. Linton, K.T. Kamtekar, C. Pearson, M.R. Bryce, M.C. Petty, Chem. Mater. 23, 1640 (2011)CrossRefGoogle Scholar
  59. 59.
    R.W. Scott, O.M. Wilson, S.-K. Oh, E.A. Kenik, R.M. Crooks, J. Am. Chem. Soc. 126, 15583 (2004)Google Scholar
  60. 60.
    P.J. Jesuraja, K. Jeganathan, RSC Adv. 5, 684 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mohammad Janghouri
    • 1
  • Ezeddin Mohajerani
    • 2
  • Hadi Hosseni
    • 3
  1. 1.Faculty of Electrical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Laser and Plasma Research InstituteShahid Beheshti University, G.C.TehranIran
  3. 3.Department of ChemistryShahid Beheshti University, G. C.TehranIran

Personalised recommendations