Efficient Storage of Gentamicin in Nanoscale Zeolitic Imidazolate Framework-8 Nanocarrier for pH-Responsive Drug Release

Article

Abstract

In this study, a simple method was developed to prepare gentamaicin (GEN)—loaded nanoscale zeolitic imidazolate framework-8 (GEN@NZIF-8) nanoparticles (NPs) at room temperature and GEN@NZIF-8 NPs were characterized by FT-IR spectroscopy, powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, BET nitrogen adsorption–desorption, and UV–Vis spectroscopy. The PXRD patterns showed that large drug molecules can be encapsulated in ZIF-8 frameworks. Thermogravimetric analysis confirms that the GEN@NZIF-8 NPs have higher thermal stability than ZIF-8 NPs. FT-IR spectroscopy exhibted the presence of functional groups of GEN and NZIF-8 frameworks in GEN@NZIF-8 NPs. Results showed that GEN@NZIF-8 NPs exhibited high drug capacity (19%) and high drug loading capacity of gentamicin anions through ion exchange and good chemical stability. The researchers attempted to demonstrate that large drug molecules at pH 5.0 and 7.4 could be loaded in NZIF-8 NPs. Additionally, drug release in acidic condition was faster than in physiological condition. The biological activities of GEN, NZIF-8 and GEN@NZIF-8 NPs against Gram-positive and Gram-negative bacteria showed that the GEN@NZIF-8 NPs had good antimicrobial activity. This work highlights the potential of using NZIF-8 as a valuable candidate to develop highly efficient drug delivery vehicles in the treatment of infectious diseases using pH-responsive release.

Keywords

Nanoscale zeolitic imidazolate framework-8 Gentamicin Nanocarrier pH-responsive 

Abbreviations

GEN

Gentamaicin

GEN@NZIF-8

Gentamaicin loaded nanoscale zeolitic imidazolate framework-8

NPs

Nanoparticles

MOFs

Metal–organic frameworks

NZIF-8

Nanoscale zeolitic imidazolate framework-8

DDS

Drug delivery systems

SOD

Sodalite

PBS

Phosphate buffer saline

Notes

Acknowledgements

This work has been financially supported by Azarbaijan Shahid Madani University under the Grant Number 96/603.

References

  1. 1.
    H. Furukawa, U. Muller, O.M. Yaghi, Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, J.M. Shreeve, Metal–organic frameworks as high explosives: a new concept for energetic materials. Angew. Chem. Int. Ed. 53, 2540–2542 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Nabipour, M.H. Sadr, G.R. Bardajee, Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 41, 7364–7370 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Nabipour, M.H. Sadr, G.R. Bardajee, Release behavior, kinetic and antimicrobial study of nalidixic acid from [Zn2(bdc)2(dabco)]metal organic frameworks. J. Coord. Chem. 70, 1–24 (2017)CrossRefGoogle Scholar
  6. 6.
    C.Y. Sun, C. Qin, X.L. Wang, G.S. Yang, K.Z. Shao, Y.Q. Lan, Z.M. Su, P. Huang, C.G. Wang, E.B. Wang, Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 41, 6906–6909 (2012)CrossRefGoogle Scholar
  7. 7.
    I.B. Vasconcelos, da Silva T.G., G.C.G. Militao, T.A. Soares, N.M. Rodrigues, M.O. Rodrigues, N.B. da Costa, R.O. Freire, S.A. Junior, Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv. 2, 9437 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Kida, K. Suematsu, K. Hara, K. Kanie, A. Muramatsu, Ultrasensitive detection of volatile organic compounds by a pore tuning approach using anisotropically shaped SnO2 nanocrystals. ACS Appl. Mater. Interfaces 8(51), 35485–35495 (2016)CrossRefGoogle Scholar
  9. 9.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58, 1010–1013 (2008)CrossRefGoogle Scholar
  10. 10.
    K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency. Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  11. 11.
    K.R. Reddy, L.P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  12. 12.
    A.M. Showkat, Y.P. Zhang, M.S. Kim, A. Lyenger, G. Karla, K.R. Reddy, P. Lee, Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesporous Silica. Bull. Korean Chem. Soc. 28, 1985–1992 (2007)CrossRefGoogle Scholar
  13. 13.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J. Nanosci. Nanotechnol. 11, 3692–3695 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–11994 (2014)CrossRefGoogle Scholar
  15. 15.
    S.C. Balmert, S.R. Little, Biomimetic delivery with micro and nanoparticles. Adv. Mater. 24, 3757–3778 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Aguado, J. Quiros, J. Canivet, D. Farrusseng, K. Boltes, R. Rosal, Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere 113, 188–192 (2014)CrossRefGoogle Scholar
  18. 18.
    M.P. Jian, B. Liu, G.S. Zhang, R.P. Liu, X.W. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A 465, 67–76 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Ethiraj, F. Bonino, C. Lamberti, S. Bordiga, H2S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study. Microporous Mesoporous Mater. 207, 90–94 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Liu, M. Jian, R. Liu, J. Yao, X. Zhang, Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloids Surf. A 481, 358–366 (2015)CrossRefGoogle Scholar
  21. 21.
    M. He, J. Yao, Q. Liu, K. Wang, F. Chen, H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 184, 55–60 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Manjunatha, S. Vasanti, N. Rajesh, N. Uma, Formulation and evaluation of biopolymer based microspheres for nasal drug delivery. Int. J. PharmTech. Res. 2(1), 856 (2010)Google Scholar
  23. 23.
    S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  25. 25.
    U. Posadowska, M. Brzychczy-Włoch, E. Pamuła, Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng. Biomech. 17(3), 41–48 (2015)Google Scholar
  26. 26.
    A.L. Doadrio, E.M. Sousa, J.C. Doadrio, J. Pérez Pariente, I. Izquierdo-Barba, M. Vallet-Regí, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Controlled Release 97(1), 125–132 (2004)CrossRefGoogle Scholar
  27. 27.
    V.C.A. Martins, G. Goissis, Nonstoichiometric hydroxyapatite-anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif. Organs 24(3), 224–230 (2000)CrossRefGoogle Scholar
  28. 28.
    M. Bohner, J. Lemaitre, P. Van Landuty, P.Y. Zambelli, H.P. Markle, B. Gander, Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system. J. Pharm. Sci. 86(5), 565–572 (1997)CrossRefGoogle Scholar
  29. 29.
    M. Changez, K. Burugapalli, V. Koul, V. Choudhary, The effect of composition of poly(acrylic acid) – gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24(4), 527–536 (2003)CrossRefGoogle Scholar
  30. 30.
    H.S. Seifert, M. So, Genetic mechanisms of bacterial antigenic variation. Microbiol. Rev. 52, 327 (1988)Google Scholar
  31. 31.
    M.H. Sadr, H. Nabipour, G.R. Behbahani, Synthesis and antibacterial activity of N-pyridin-2-ylbenzenesulfonamide nanoparticles. IRBM 36(1), 10–14 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Nabipour, Synthesis, identification, and antibacterial activity of new sulfonamide nanoparticles. IEEE Trans. Nanobiosci. 11(3), 296–303 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Nabipour, S. Ghammamy, S. Ashuri, Z.S. Aghbolagh, Synthesis of a new dithiocarbamate compound and study of its biological properties. J. Org. Chem. 2, 75–80 (2010)Google Scholar
  34. 34.
    H. Nabipour, S. Ghammamy, A. Rahmani, Synthesis of a new dithiocarbamate cobalt complex and its nanoparticles with the study of their biological properties. IET Micro Nano Lett. 6(4), 217–220 (2011)CrossRefGoogle Scholar
  35. 35.
    H. Nabipour, M.H. Sadr, N. Thomas, Synthesis, controlled release and antibacterial studies of nalidixic acid–zinc hydroxide nitrate nanocomposites. New J. Chem. 40, 238–244 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Nabipour, M.H. Sadr, N. Thomas, Synthesis, characterisation and sustained release properties of layered zinc hydroxide intercalated with amoxicillin trihydrate. J. Exp. Nanosci. 10(16), 1269–1284 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Faculty of PharmacyHormozgan University of Medical ScienceBandar AbbasIran

Personalised recommendations