Extraction of Heavy Metals, Dichromate Anions and Rare Metals by New Calixarene-Chitosan Polymers

Article
  • 35 Downloads

Abstract

This paper describes the extraction properties of three kinds of new Calix[n]arene-Chitosan Polymer (n = 4, 6, 8) (C[n]CSP (n = 4, 6, 8)) which are soluble in chloroform. Through the two-liquid-phase method of lab of Martell and different spectrophotometry, extraction studies of Fe3+, heavy metal cations (Cd2+, Pb3+ and Hg2+), dichromate anions and rare earth metal cations (La3+, Ce3+ and Eu3+) were performed by C[n]CSP (n = 4, 6, 8) as extracting agent material. At the same time, the raw material of Chitosan (CS) and Calix[n]arene (n = 4, 6, 8) (C[n] (n = 4, 6, 8)) were used for comparisons in these experiments. Being not affected by pH and hydrogen bonding in water solution, the extraction percentage of Hg2+ cation by C (Soedarsono et al. Ber. Bunsenges. Phys. Chem 100:477, 1996) CSP reach 98.96%, the extraction capacity of C[4] CSP toward Fe3+ cation is 33.47 mg g−1 and the extraction capacities of C[n]CSP (n = 4, 6, 8) toward La3+, Ce3+, Eu3+ cations had been much risen, and the extraction capacity of C[n]CSP (n = 4, 6, 8) toward dichromate anions is three to four times higher than that of C[n] (n = 4, 6, 8) and Chitosan. The results showed that C[n]CSP (n = 4, 6, 8) were excellent extracting agent in ions extraction.

Keywords

Calixarene Chitosan Polymer Extraction Two-liquid-phase method Heavy metals Dichromate anions Rare earth metal 

Notes

Acknowledgements

This work was financially supported by Excellent Young Scientist Foundation of Inner Mongolia Agricultural University of China (Grant No. 2014XYQ-20) and the National Natural Science Foundation of China (Grant No. 21462030).

References

  1. 1.
    Y. Liu, C.-C. You, H.-Y. Zhang, Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors (Nankai University Press, Tianjin, 2001)Google Scholar
  2. 2.
    Z.-M. Zhong, J.-X. Yao, Inner Mongolian Petrochem. Ind. 2, 9 (2005)Google Scholar
  3. 3.
    R. Ludwig, D. Lentz, T.K.D. Nguyen, Radiochim. Acta 88, 335 (2000).  https://doi.org/10.1524/ract.2000.88.6.335 CrossRefGoogle Scholar
  4. 4.
    L.-L. Zheng, Studies on functionalized Calixarene aza derivatives and polymers. Dissertation (Fujian Normal University, China, 2006)Google Scholar
  5. 5.
    K. Fukiko, K. Takahiko, G. Masahiro, F. Shintaro, N. Fumiyuki, H. Tadashi, J. Membr. Sci. 65, 149 (2000).  https://doi.org/10.1016/S0376-7388(99)00231-8 Google Scholar
  6. 6.
    J. Soedarsono, A. Hagkge, M. Burgard, Z. Asfari, J. Vicens, Ber. Bunsenges. Phys. Chem. 100, 477 (1996).  https://doi.org/10.1002/bbpc.19961000412 CrossRefGoogle Scholar
  7. 7.
    K. Ohto, M. Yano, K. Inoue, T. Nagasaki, M. Goto, F. Nakashio, S. Shinkai, Polyhedron 16, 1655 (1997).  https://doi.org/10.1016/S0277-5387(96)00470-6 CrossRefGoogle Scholar
  8. 8.
    M.H. Jack, M. Mauro, J.P. Brendan, W.S. Brian, H.W. Allan, Dalton. Trans. 8, 1687 (1996).  https://doi.org/10.1039/DT9960001687 Google Scholar
  9. 9.
    T.D. Jiang, Chitin (Chemical Industry Press, Beijing, 2003)Google Scholar
  10. 10.
    T. Mustafa, Y. Mustafa, Bioresource Technol. 99, 6642 (2008).  https://doi.org/10.1016/j.biortech.2007.11.066 CrossRefGoogle Scholar
  11. 11.
    X.-H. Tang, Y.-F. Tong, Z.-W. Jin, C.-C. Guo, Polym. Mater. Sci. Eng. 23, 243 (2007)Google Scholar
  12. 12.
    F.-F. Yang, X.-L. Chen, X.-Q. Cai, J.-R. Lin, Chin. J. Synth Chem. 12, 120 (2004)Google Scholar
  13. 13.
    X.-L. Chen, F. Yang, X.C. Huan, F. Qiu, Chem. Res. Appl. 16, 371 (2004)Google Scholar
  14. 14.
    Y.-N. Liu, Z.-M. Zhong, J. Macromol. Sci. Pure Appl. Chem. 54, 678 (2017).  https://doi.org/10.1080/10601325.2017.1321959 CrossRefGoogle Scholar
  15. 15.
    R.M. Smith, A.E. Martell, Critical Stability Constants (Plenum Press, New York, 1982)Google Scholar
  16. 16.
    J.-M. Mo, W.-Y. Wen, X.-Y. Shi, Technol. Dev. Chem. Ind. 42, 35 (2013)Google Scholar
  17. 17.
    Y.-N. Liu, Z.-M. Zhong, J. Inner Mongolia Agric. Univ. (Chinese) 36, 148 (2015)Google Scholar
  18. 18.
    J.-Y. Mao, Simultaneous Determination of Cadmium, Lead, Mercury in Water by Feed–Forward Networks Spectrophotometry. Dissertation (Beijing University of Technology, China, 2011)Google Scholar
  19. 19.
    X.-C. Zhao, J. Yan, J. Mol. Sci. 31, 400 (2015)Google Scholar
  20. 20.
    L.-P. Xiong, Z.-H. Fu, T.-Z. Yang, Chin. J. Rare Metals 33, 766 (2009).  https://doi.org/10.3969/j.issn.0258-7076.2009.05.033 Google Scholar
  21. 21.
    M. Wang, Chin. J. Spectrosc. Lab. 21, 390 (2004)Google Scholar
  22. 22.
    H. Yang, Chin. Rare Earths 31, 87 (2010)Google Scholar
  23. 23.
    Y. Fu, S.-L. Bai, S.-X. Cui, D.-L. Qiu, Z.-Q. Wang, X. Zhang, Macromolecules 35, 9451 (2002).  https://doi.org/10.1021/ma0207881 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of ScienceInner Mongolia Agricultural UniversityHohhotChina

Personalised recommendations