Effect of Thermal Annealing on a Ternary Organic Solar Cell Incorporating Gaq3 Organometallic as a Boosting Acceptor

  • Fahmi F. MuhammadEmail author
  • Kamal Aziz Ketuly
  • Mohd Y. YahyaEmail author


In this work, the impacts of thermal treatment on the optical, structural and photovoltaic properties of ternary organic solar cells based on DH6T:Gaq3:PC61BM are investigated in the temperature range from 413 to 493 K. The addition of Gaq3 organometallic material as a secondary acceptor is to boost the performance and reproducibility of the devices. The results showed an increased crystallinity, improved photo-absorption and decreased photoluminescence response for the active layers upon annealing to up to 453 K, which was accompanied by the enhancement in the overall photovoltaic performance of the devices by about 11%. A non-monotonic change in the open circuit voltage (V oc ), short circuit current (I sc ) and fill factor (FF) was noticed due to temperature changes. A reasonable batch-to-batch reproducibility was achieved, accentuating a stable operation of the devices under thermal variations.


Ternary solar cells Thermal annealing Organometallic materials Gaq3 doped DH6T:PCBM 



This work was financially supported in part by Research University Grant (RUG), UTM Malaysia (Vot: Q.J130000.2509.17H35), and in part by Koya University. The findings made herein are solely the responsibility of the authors.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93(4), 394 (2009)CrossRefGoogle Scholar
  2. 2.
    G.J. Hedley, A. Ruseckas, I.D.W. Samuel, Chem. Rev. 117(2), 796 (2017)CrossRefGoogle Scholar
  3. 3.
    M.J. Miah, M. Shahabuddin, M. Karikomi, M. Salim, E. Nasuno, N. Kato, K.-I. Iimura, Bull. Chem. Soc. Jpn. 89(2), 203 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Xiao, K. Gao, Y. Zhang, X. Chen, L. Hou, Y. Cao, X. Peng, J. Mater. Chem. A 4(14), 5288 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Huang, J.H. Carpenter, C.-Z. Li, J.-S. Yu, H. Ade, A.K.Y. Jen, Adv. Mater. 28(5), 967 (2016)CrossRefGoogle Scholar
  6. 6.
    U. Kumar, S. Sikarwar, R.K. Sonker, B. Yadav, J. Inorg. Organomet. Polym. Mater. 26(6), 1231 (2016)CrossRefGoogle Scholar
  7. 7.
    N. Chakravarthi, K. Gunasekar, S.-H. Jin, J.H. Lee, J. Inorg. Organomet. Polym. Mater. 25(1), 107 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Michinobu, K. Okoshi, H. Osako, H. Kumazawa, K. Shigehara, Polymer 49(1), 192 (2008)CrossRefGoogle Scholar
  9. 9.
    H. Shimogawa, M. Endo, T. Taniguchi, Y. Nakaike, M. Kawaraya, H. Segawa, Y. Murata, A. Wakamiya, Bull. Chem. Soc. Jpn. 90(4), 441 (2017)CrossRefGoogle Scholar
  10. 10.
    T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, B.-J. Hwang, Energy Environ. Sci. 9(2), 323 (2016)CrossRefGoogle Scholar
  11. 11.
    B.Y. Kadem, A.K. Hassan, W. Cranton, J Mater. Sci.: Mater. Electron. 26(6), 3976 (2015)Google Scholar
  12. 12.
    P. Sehati, S. Braun, L. Lindell, L. Xianjie, L.M. Andersson, M. Fahlman, IEEE J. Sel. Top. Quantum Electron. 16(6), 1718 (2010)CrossRefGoogle Scholar
  13. 13.
    N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, M.L. Chabinyc, Adv. Energy Mater. 1(1), 82 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Cha, D.S. Chung, S.Y. Bae, M.-J. Lee, T.K. An, J. Hwang, K.H. Kim, Y.-H. Kim, D.H. Choi, C.E. Park, Adv. Funct. Mater. 23(12), 1556 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Ameri, P. Khoram, J. Min, C.J. Brabec, Adv. Mater. 25(31), 4245 (2013)CrossRefGoogle Scholar
  16. 16.
    R.C. Mulherin, S. Jung, S. Huettner, K. Johnson, P. Kohn, M. Sommer, S. Allard, U. Scherf, N.C. Greenham, Nano Lett. 11(11), 4846 (2011)CrossRefGoogle Scholar
  17. 17.
    E.D. Peterson, G.M. Smith, M. Fu, R.D. Adams, R.C. Coffin, D.L. Carroll, Appl. Phys. Lett. 99(7), 073304 (2011)CrossRefGoogle Scholar
  18. 18.
    X. Huajun, O. Hideo, B. Hiroaki, I. Shinzaburo, Jpn. J. Appl. Phys. 53(1S), 01AB10 (2014)CrossRefGoogle Scholar
  19. 19.
    F.F. Muhammad, M.Y. Yahya, K. Sulaiman, Mater. Chem. Phys. 188, 86 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, A. Bansal, B. Behera, S.L. Jain, S.S. Ray, Mater. Chem. Phys. 172, 189 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Minxia, Y. Xinge, Y. Xu, W. Hanyu, Z. Lei, J. Quan, L. Hui, J. Phys. D 48(29), 295105 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Ye, H.-H. Xu, H. Yu, W.-Y. Xu, H. Li, H. Wang, N. Zhao, J.-B. Xu, J. Phys. Chem. C 118(35), 20094 (2014)CrossRefGoogle Scholar
  23. 23.
    S.-J. Tsai, M. Ballarotto, H.-C. Kan, R. Phaneuf, Energies 8(3), 1547 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Qin, H. Cao, J. Zhang, Appl. Phys. A 123(5), 307 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Kim, M. Shin, Y. Kim, J. Phys. Chem. C 113(4), 1620 (2009)CrossRefGoogle Scholar
  26. 26.
    F.F. Muhammad, M.Y. Yahya, F. Aziz, M.A. Rasheed, K. Sulaiman, J. Mater. Sci.: Mater. Electron. 1 (2017)Google Scholar
  27. 27.
    F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. Chem. Soc. 115(19), 8716 (1993)CrossRefGoogle Scholar
  28. 28.
    F.F. Muhammad, M.Y. Yahya, K.A. Ketuly, A.J. Muhammad, K. Sulaiman, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 169, 144 (2016)CrossRefGoogle Scholar
  29. 29.
    F.F. Muhammad, M.Y. Yahya, S.S. Hameed, F. Aziz, K. Sulaiman, M.A. Rasheed, Z. Ahmad, PLoS ONE 12(8), e0182925 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Cook, H. Ohkita, Y. Kim, J.J. Benson-Smith, D.D.C. Bradley, J.R. Durrant, Chem. Phys. Lett. 445(4–6), 276 (2007)CrossRefGoogle Scholar
  31. 31.
    J.-H. Kwon, J.-H. Seo, J. Appl. Phys. 101, 064502 (2007)CrossRefGoogle Scholar
  32. 32.
    F. Wudl, J. Mater. Chem. 12(7), 1959 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Sol. Energy Mater. Sol. Cells 92(7), 753 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Jo, S.-S. Kim, S.-I. Na, B.-K. Yu, D.-Y. Kim, Adv. Funct. Mater. 19(6), 866 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Adv. Funct. Mater. 24(21), 3250 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Kiriy, A. Kiriy, V. Bocharova, M. Stamm, S. Richter, M. Plötner, W.-J. Fischer, F.C. Krebs, I. Senkovska, H.-J. Adler, Chem. Mater. 16(23), 4757 (2004)CrossRefGoogle Scholar
  37. 37.
    P.G. Karagiannidis, S. Kassavetis, C. Pitsalidis, S. Logothetidis, Thin Solid Films 519(12), 4105 (2011)CrossRefGoogle Scholar
  38. 38.
    Z. Du, W. Chen, Y. Chen, S. Qiao, X. Bao, S. Wen, M. Sun, L. Han, R. Yang, J. Mater. Chem. A 2(38), 15904 (2014)CrossRefGoogle Scholar
  39. 39.
    F.F. Muhammad, K. Sulaiman, Mater. Chem. Phys. 148(1–2), 473 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Shang, X. Yu, X. Ye, L. Zhang, Q. Jiang, H. Lin, J. Mater. Sci.: Mater. Electron. 26(8), 5708 (2015)Google Scholar
  41. 41.
    F.F. Muhammad, K. Sulaiman, Mater. Chem. Phys. 129(3), 1152 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Kitchen, O. Awartani, R.J. Kline, T. McAfee, H. Ade, B.T. O’Connor, ACS Appl. Mater. Interfaces 7(24), 13208 (2015)CrossRefGoogle Scholar
  43. 43.
    A.K. Thakur, G. Wantz, G. Garcia-Belmonte, J. Bisquert, L. Hirsch, Sol. Energy Mater. Sol. Cells 95(8), 2131 (2011)CrossRefGoogle Scholar
  44. 44.
    I. Hwang, C.R. McNeill, N.C. Greenham, Synth. Met. 189, 63 (2014)CrossRefGoogle Scholar
  45. 45.
    Z. Ahmad, F. Touati, F.F. Muhammad, M.A. Najeeb, R.A. Shakoor, Appl. Phys. A 123(7), 486 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Soft Materials and Devices Laboratory, Department of Physics, Faculty of Science and HealthKoya UniversityKoyaIraq
  2. 2.Department of Medical Chemistry, College of MedicineUniversity of DuhokDuhokIraq
  3. 3.Centre for Composites, Institute for Vehicle Systems & EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations