Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties

  • Swarup Roy
  • Suryakant Mishra
  • Priyanka Yogi
  • Shailendra K. Saxena
  • Pankaj R. Sagdeo
  • Rajesh KumarEmail author


Optical and electronic properties of hybrid Polypyrrole (Ppy)–Titanium oxide (TiO2) nanocomposite, synthesized using oxidative chemical polymerization method have been investigated here. The synthesized organic–inorganic hybrid materials have been characterized using XRD, FT-IR, FESEM, UV–Vis, Raman, and TGA. Electrical conductance and dielectric behavior of the electrical phenomena of the sample have also been investigated. XRD results demonstrate the amorphous nature of Ppy, however, its composites with TiO2 exhibit crystalline nature. FT-IR spectroscopy reveals the presence of interaction between conducting Ppy and TiO2. UV–Vis study show changes in spectra of Ppy in presence of TiO2 with a slight increase in the band gap. The SEM results reveal encapsulation of TiO2 particles in Ppy matrix and agglomeration of grains have also been observed with evident changes in morphology with increasing percentages of TiO2. TGA data indicates that the composite materials show good thermal stability. Conductance results show that electrical conductivity of Ppy increases upon addition of TiO2. It has also been noticed that the dielectric parameters (dielectric constant, loss tangent) of Ppy vary with addition of TiO2. The resulting insight clearly suggests that by embedding TiO2 in Ppy the electrical properties of the composites can be improved.


Nanocomposite Polypyrrole Oxidation TiO2 Dielectric 



Authors are thankful to Department of Science and Technology (DST), Govt. of India, for financial support through grant number (No. SB/S2/CMP-012-2014). Authors thank SIC, Indian Institute of Technology Indore for the instrumental facilities. Authors thank Mr. Vikash Mishra (IIT Indore) for valuable discussions.


  1. 1.
    R. Gangopadhyay, A. De, Chem. Mater. 12, 608 (2000)CrossRefGoogle Scholar
  2. 2.
    T.J. Rivers, T.W. Hudson, C.E. Schmidt, Adv. Funct. Mater. 12, 33 (2002)CrossRefGoogle Scholar
  3. 3.
    N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. 32, 876 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Nguyen-Cong, V. de la Garza Guadarrama, J.L. Gautier, P. Chartier, Electrochim. Acta 48, 2389 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Gangopadhyay, A. De, Eur. Polym. J. 35, 1985 (1999)CrossRefGoogle Scholar
  6. 6.
    M.-K. Song, Y.-T. Kim, B.-S. Kim, J. Kim, K. Char, H.-W. Rhee, Synth. Met. 141, 315 (2004)CrossRefGoogle Scholar
  7. 7.
    D.A. Makeiff, T. Huber, Synth. Met. 156, 497 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Yao, Q. Lin, K. Zhang, D. Zhao, H. Lv, J. Zhang, B. Yang, J. Colloid Interface Sci. 315, 434 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Bhattacharya, D.C. Mukherjee, J.M. Gohil, Y. Kumar, S. Kundu, Desalination 225, 366 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Liang, X. Li, Appl. Catal. B 86, 8 (2009)CrossRefGoogle Scholar
  11. 11.
    G. Chakraborty, K. Gupta, A.K. Meikap, R. Babu, W.J. Blau, Solid State Commun. 152, 13 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Han, D. Li, W.-C. Li, C. Lei, Q. Sun, A.-H. Lu, Adv. Funct. Mater. 23, 1692 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Ebrahimiasl, A. Zakaria, A. Kassim, S.N. Basri, Int. J. Nanomed. 10, 217 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, X. Yang, Build. Environ. 38, 645 (2003)CrossRefGoogle Scholar
  15. 15.
    Z.-L. Hua, J.-L. Shi, L.-X. Zhang, M.-L. Ruan, J.-N. Yan, Adv. Mater. 14, 830 (2002)CrossRefGoogle Scholar
  16. 16.
    S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace, Electrochim. Acta 52, 7377 (2007)CrossRefGoogle Scholar
  17. 17.
    N.M. Dimitrijevic, S. Tepavcevic, Y. Liu, T. Rajh, S.C. Silver, D.M. Tiede, J. Phys. Chem. C 117, 15540 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Chowdhury, A. Paul, A. Chattopadhyay, Langmuir 21, 4123 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Feng, W. Yan, J. Appl. Polym. Sci. 128, 3231 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Deivanayaki, V. Ponnuswamy, R. Mariappan, P. Jayamurugan, Optik 124, 1089 (2013)CrossRefGoogle Scholar
  21. 21.
    X. Li, J. Sun, G. He, G. Jiang, Y. Tan, B. Xue, J. Colloid Interface Sci. 411, 34 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Zhang, Q. Li, J. Li, Synth Met 160, 1699 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Mavinakuli, S. Wei, Q. Wang, A.B. Karki, S. Dhage, Z. Wang, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 3874 (2010)CrossRefGoogle Scholar
  24. 24.
    H.J. Kharat, K.P. Kakde, P.A. Savale, K. Datta, P. Ghosh, M.D. Shirsat, Polym. Adv. Technol. 18, 397 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Arora, A. Chaubey, R. Singhal, R.P. Singh, M.K. Pandey, S.B. Samanta, B.D. Malhotra, S. Chand, Biosens. Bioelectron 21, 1777 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Ahmed, F. Kanwal, S.M. Ramay, A. Mahmood, S. Atiq, Y.S. Al-Zaghayer, Adv. Condens. Matter Phys. 2016, e4793434 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Partch, S.G. Gangolli, E. Matijević, W. Cal, S. Arajs, J. Colloid Interface Sci. 144, 27 (1991)CrossRefGoogle Scholar
  28. 28.
    B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Nanotechnology 17, 2560 (2006)CrossRefGoogle Scholar
  29. 29.
    M.A. Jagtap, M.V. Kulkarni, S.K. Apte, S.D. Naik, B.B. Kale, Mater. Sci. Eng. B 168, 199 (2010)CrossRefGoogle Scholar
  30. 30.
    H. Shiigi, M. Kishimoto, H. Yakabe, B. Deore, T. Nagaoka, Anal. Sci. 18, 41 (2002)CrossRefGoogle Scholar
  31. 31.
    A.R. Sadrolhosseini, S. Abdul Rashid, A.S.M. Noor, A. Kharazmi, H.N. Lim, M.A. Mahdi, J. Nanomater. 2016, e1949042 (2016)Google Scholar
  32. 32.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)CrossRefGoogle Scholar
  33. 33.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar
  34. 34.
    V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Kranjcˇec, I.P. Studenyak, G.S. Kovacs, I.D. Desnica Frankovic´, V.V. Panko, P.P. Guranich, V.Y. Slivka, J. Phys. Chem. Solids 62, 665 (2001)CrossRefGoogle Scholar
  36. 36.
    H. Nguyen Thi Le, M.C. Bernard, B. Garcia-Renaud, C. Deslouis, Synth. Met 140, 287 (2004)CrossRefGoogle Scholar
  37. 37.
    J.-C. Xu, W.-M. Liu, H.-L. Li, Mater. Sci. Eng. C 25, 444 (2005)CrossRefGoogle Scholar
  38. 38.
    C. Basavaraja, J.H. Jang, G.H. Jung, D.S. Huh, Polym. Compos 35, 364 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Zhu, S. Wei, L. Zhong, Y. Mao, J. Ryu, P. Mavinakuli, A.B. Karki, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 16335 (2010)CrossRefGoogle Scholar
  40. 40.
    F. Kanwal, S.A. Siddiqi, A. Batool, M. Imran, W. Mushtaq, T. Jamil, Synth Met 161, 335 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Batool, F. Kanwal, M. Imranb, T. Jamil, S.A. Siddiqi, Synth Met 161, 2753 (2012)CrossRefGoogle Scholar
  42. 42.
    H.P. de Oliveira, C.A.S. Andrade, C.P. de Melo, Synth. Met 155, 631 (2005)CrossRefGoogle Scholar
  43. 43.
    S.A. Saafan, M.K. El-Nimr, E.H. El-Ghazzawy, J. Appl. Polym. Sci. 99, 3370 (2006)CrossRefGoogle Scholar
  44. 44.
    I. Haldar, A. Nayak, J. Nanosci. Nanotechnol 17, 4658 (2017)CrossRefGoogle Scholar
  45. 45.
    K. Praveenkumar, T. Sankarappa, J.S. Ashwajeet, R. Ramanna, J. Polym. 2015, e893148 (2015)Google Scholar
  46. 46.
    K. Ahmed, F. Kanwal, S.M. Ramay, A. Mahmood, S. Atiq, Y.S. Al-Zaghayer, Adv. Condens. Matter Phys. 2016, 1 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Swarup Roy
    • 1
  • Suryakant Mishra
    • 1
  • Priyanka Yogi
    • 1
  • Shailendra K. Saxena
    • 1
    • 2
  • Pankaj R. Sagdeo
    • 1
  • Rajesh Kumar
    • 1
    Email author
  1. 1.Material Research Laboratory, Discipline of PhysicsIndian Institute of Technology IndoreSimrolIndia
  2. 2.National Institute for NanotechnologyUniversity of AlbertaEdmontonCanada

Personalised recommendations