Structural and Optical Properties of LaPO4 Nanostructures by the Hydrothermal Process and Its Photocatalytic Activity

  • V. Rajendran
  • C. Ramamoorthy


In the present work, comparative studies of the physico-chemical properties of pure, Eu and Ce-doped LaPO4 nanostructures have been investigated. The pure, Eu- and Ce-doped LaPO4 nanostructures were prepared by taking a cationic precursor (lanthanum nitrate), an anionic precursor (orthophosphoric acid) and carbinol (methanol) as a solvent by the hydrothermal method. The crystal structure, vibrational, morphological, compositional and optical behavior of the as-prepared LaPO4 samples was investigated by the powder XRD, FTIR, SEM-EDX, TEM, UV–Visible and PL studies. From XRD patterns, the monoclinic structure was observed for the prepared LaPO4 samples. The optical bandgap energy of the pure, Eu- and Ce-doped LaPO4 samples were larger than that of the bulk LaPO4. The PL emission spectra of the LaPO4 samples were observed in the UV region. In addition, degradation of the Ce-doped LaPO4 sample was investigated and collected at various time intervals using MeB dye.

Graphical Abstract


REM LaPO4 Hydrothermal Structural Optical UV irradiation 



This work was financially supported by the “Department of Science and Technology” (DST) in India.


  1. 1.
    E. Ghazalian, N. Ghasemi, A.R. Amani-Ghadim, J. Mol. Catal. A 426, 270 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Chen, Y. Dai, X. Wang, J. Alloy. Compd. 649, 932 (2015)Google Scholar
  3. 3.
    F. Li et al., Mater. Lett 188, 346 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Ma, W.X. Chen, Y.F. Zheng, Z.D. Xu, Mater. Res. Bull. 43, 2849 (2008)Google Scholar
  5. 5.
    H. Wang, G. Li, X. Guan, L. Li, J. Alloy. Compd. 509, 4166 (2011)Google Scholar
  6. 6.
    L. Yu, D. Li, M. Yue, Mater. Lett. 61, 4376 (2007)Google Scholar
  7. 7.
    K. Mi, Y. Ni, X. Ma, J. Hong, J. Colloid Interface Sci. 356, 495 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Rui, Q. Dong, L. Wei, Trans. Nonferrous Met. Soc. 20, 436 (2010)Google Scholar
  9. 9.
    R.A. Sujatha et al., Mater. Lett. 112, 19 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Li et al., Mater. Chem. Phys. 154, 268 (2012)Google Scholar
  11. 11.
    N. Niu et al., J. Alloy. Compd. 121, 3102 (2011)Google Scholar
  12. 12.
    X. Li, J. Ma, J. Lumin. 131, 360 (2011)Google Scholar
  13. 13.
    H. Wang, R. Liu, L. Liu, X. Shi, Z. Xu, Electrochem. Commun. 17, 81 (2012)Google Scholar
  14. 14.
    M.G. Ma, F. Deng, K. Yao, Mater. Lett. 124, 176 (2014)CrossRefGoogle Scholar
  15. 15.
    C.C. Alves et al., Mater. Lett. 137, 439 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Mi, Y. Ni, Y. Xu, X. Ma, J. Hong, J. Colloid Interface Sci. 356, 495 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Ferhi, K. Horchani-Naifer, M. Ferid, J. Lumin. 128, 1782 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Liu, Z. Ma, J. Tai. Ins. Chem. Eng. 71, 380 (2017)Google Scholar
  19. 19.
    B. Pan, S. Luo, W. Su, X. Wang, Appl. Catal. B 169, 464 (2015)Google Scholar
  20. 20.
    M. Li et al., J. Appl. Catal. B 201, 635 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Li, J. Ma, J. Lumin. 131, 1360 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations