Nickel Based Paddle-Wheel Metal–Organic Frameworks Towards Adsorption of O3 and SO2 Molecules: Quantum-Chemical Calculations

  • Ali Shokuhi RadEmail author
  • Aref Chourani


In this study, the interaction of O3 and SO2 molecules on the surface of nickel center open metal site (Ni-OMS) of Ni-paddle-wheel units (Ni2 (O2CL)4 [L=–CH3, –C6H5, and –CN)] has been investigated using density functional theory (DFT). We found important impacts of different linked functional groups towards O3 and SO2 molecules adsorption on Ni-OMS. While adsorption of O3 on Ni-OMS linked by different groups varies as C6H5 > CH3 > CN, different order (CN > C6H5 > CH3) is found for SO2 adsorption. As a result, charge allocation of Ni atom in Ni-OMS depends on the kind of linked group as well as type of adsorbate. For all systems, the changes in the electronic structure of Ni-OMS upon adsorption of above-mentioned molecules were followed by taking into account the optimized geometry, charge transfer, dipole moment, frontier molecular orbitals, and density of states. Our results confirm possibility of designing selective sensor/adsorbent by change in the kind of linked group within Ni-OMS.


Metal organic frameworks Ozone Sulfur dioxide Density functional theory Nanostructures Open metal site 



We highly appreciate financial support of Islamic Azad University of Qaemshahr.


  1. 1.
    H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 112, 836–868 (2012)CrossRefGoogle Scholar
  2. 2.
    H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional framework with channeling cavities for small molecules:{[M2 (4, 4′-bpy) 3 (NO3) 4]·xH2O} n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725–1727 (1997)CrossRefGoogle Scholar
  4. 4.
    S. Horike, S. Shimomura, S. Kitagawa, Soft porous crystals. Nat. Chem. 1, 695–704 (2009)CrossRefGoogle Scholar
  5. 5.
    G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)CrossRefGoogle Scholar
  6. 6.
    O. Shekhah, H. Wang, D. Zacher, R.A. Fischer, C. Woll, Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-Step route. Angew. Chem. Int. Ed. 48, 5038–5041 (2009).CrossRefGoogle Scholar
  7. 7.
    J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)CrossRefGoogle Scholar
  8. 8.
    G. Ferey, M. Latroche, C. Serre, T. Loiseau, F. Millange, A. Percheron-Guegan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003)Google Scholar
  9. 9.
    K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y.J. Chabal, Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mater. 24, 3153–3167 (2012)CrossRefGoogle Scholar
  10. 10.
    A.R. Millward, O.M. Yaghi, Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)CrossRefGoogle Scholar
  11. 11.
    P.D.C. Dietzel, Y. Morita, R. Blom, H. Fjellvag, An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal–oxygen chains. Angew. Chem. Int. Ed. 117, 6512–6516 (2005)CrossRefGoogle Scholar
  12. 12.
    R. Poloni, B. Smit, J.B. Neaton, CO2 capture by metal–organic frameworks with van der Waals density functionals. J. Phys. Chem. A 116, 4957–4964 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Doitomi, H. Hirao, Hybrid computational approaches for deriving quantum mechanical insights into metal–organic frameworks. Tetrahedron Lett. 58, 2309–2317 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Valenzano, B. Civalleri, K. Sillar, J. Sauer, Heats of adsorption of CO and CO2 in metal–organic frameworks: quantum mechanical study of CPO-27-M (M=Mg, Ni, Zn). J. Phys. Chem. C 115, 21777–21784 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Park, H. Kim, S.S. Han, Y.J. Jung, Tuning metal–organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Phys. Chem. Lett. 3, 826–829 (2012)CrossRefGoogle Scholar
  16. 16.
    A.L. Dzubak, L.C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Ab initio carbon capture in open-site metal–organic frameworks. Nat. Chem. 4, 810–816 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Getzschmann, I. Senkovska, D. Wallacher, M. Tovar, D. Fairen-Jimenez, T. Düren, J.M. van Baten, R. Krishna, S. Kaskel, Methane storage mechanism in the metal-organic framework Cu3 (btc) 2: an in situ neutron diffraction study. Micropor. Mesopor. Mater. 136, 50–58 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Xiang, W. Zhou, J.M. Gallegos, Y. Liu, B. Chen, Exceptionally high acetylene uptake in a microporous metal–organic framework with open metal sites. J. Am. Chem. Soc. 131, 12415–12419 (2009)CrossRefGoogle Scholar
  19. 19.
    B. Jee, P.S. Petkov, G.N. Vayssilov, T. Heine, M. Hartmann, A. Poppl, A combined pulsed electron paramagnetic resonance spectroscopic and DFT analysis of the 13CO2 and 13CO adsorption on the metal–organic framework Cu2. 97Zn0. 03 (btc) 2. J. Phys. Chem. C 117, 8231–8240 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P.S. Wheatley, R.E. Morris, A. Zecchina, Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys. Chem. Chem. Phys. 9, 2676–2685 (2007)CrossRefGoogle Scholar
  21. 21.
    V.K. Peterson, Y. Liu, C.M. Brown, C.J. Kepert, Neutron powder diffraction study of D2 sorption in Cu3 (1,3,5-benzenetricarboxylate) 2. J. Am. Chem. Soc. 128, 15578–15579 (2006)CrossRefGoogle Scholar
  22. 22.
    N.C. Jeong, B. Samanta, C.Y. Lee, O.K. Farha, J.T. Hupp, Coordination-chemistry control of proton conductivity in the iconic metal–organic framework material HKUST-1. J. Am. Chem. Soc. 134, 51–54 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Farrusseng, C. Daniel, C. Gaudillere, U. Ravon, Y. Schuurman, C. Mirodatos, D. Dubbeldam, H. Frost, R.Q. Snurr, Heats of adsorption for seven gases in three metal–organic frameworks: systematic comparison of experiment and simulation. Langmuir 25, 7383–7388 (2009)CrossRefGoogle Scholar
  24. 24.
    D.A. Gomez, A.F. Combariza, G. Sastre, Confinement effects in the hydrogen adsorption on paddle wheel containing metal–organic frameworks. Phys. Chem. Chem. Phys. 14, 2508–2517 (2012)CrossRefGoogle Scholar
  25. 25.
    B. Supronowicz, A. Mavrandonakis, T. Heine, Interaction of small gases with the unsaturated metal centers of the HKUST-1 metal organic framework. J. Phys. Chem. C 117, 14570–14578 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Hijikata, S. Sakaki, Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation. Inorg. Chem. 53, 2417–2426 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Zhou, L. Cao, S. Wei, Q. Zhang, L. Chen, A first principles study of gas adsorption on charged Cu BTC. Comput. Theor. Chem. 976, 153–160 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Rubes, L. Grajciar, O. Bludsky, A.D. Wiersum, P.L. Llewellyn, P. Nachtigall, Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF. Chem. Phys. Chem. 13, 488–495 (2012)CrossRefGoogle Scholar
  29. 29.
    J.H. Bak, V.D. Le, J. Kang, S.H. Wei, Y.H. Kim, First-principles study of electronic structure and hydrogen adsorption of 3d transition metal exposed paddle wheel frameworks. J. Phys. Chem. C 116, 7386–7392 (2012)CrossRefGoogle Scholar
  30. 30.
    P. St Petkov, G.N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Wöll, T. Heine, Defects in MOFs: a thorough characterization. Chem. Phys. Chem. 13, 2025 – 2029 (2012)CrossRefGoogle Scholar
  31. 31.
    F.H. Allen, The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. B58, 380–388 (2002)CrossRefGoogle Scholar
  32. 32.
    G. Nathalie, Q. Gao, P.M. Forster, J.S. Chang, M. Noguès, S.E. Park, G. Férey, A.K. Cheetham, Nickel(II) phosphate VSB-5: a magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew. Chem. 40, 2831–2834 (2001)CrossRefGoogle Scholar
  33. 33.
    Z. Ru-Qiang, H. Sakurai, Q. Xu, Preparation, adsorption properties, and catalytic activity of 3D porous metal–organic frameworks composed of cubic building blocks and alkali-metal ions. Angew. Chem. 118, 2604–2608 (2006)CrossRefGoogle Scholar
  34. 34.
    P.M. Forster, J. Eckert, B.D. Heiken, J.B. Parise, J.W. Yoon, S.H. Jhung, J.S. Chang, A.K. Cheetham, Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. J. Am. Chem. Soc. 128, 16846–16850 (2006)CrossRefGoogle Scholar
  35. 35.
    C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga, Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Palanikumar, N. Stock, Investigation of porous Ni-based metal–organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg. Chem. 50, 5085–5097 (2011)CrossRefGoogle Scholar
  37. 37.
    A.S. Rad, E. Abedini, Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl. Surf. Sci. 360, 1041–1046 (2016)CrossRefGoogle Scholar
  38. 38.
    A.S. Rad, Adsorption of C2H2 and C2H4 on Pt-decorated graphene nanostructure: ab-initio study. Synth. Met. 211, 115–120 (2016)CrossRefGoogle Scholar
  39. 39.
    A.S. Rad, Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Phys. E 83, 135–140 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Gholami, A.S. Rad, A. Heydarinasab, M. Ardjmand, Adsorption of adenine on the surface of nickel-decorated graphene; a DFT study. J. Alloys Compd. 686, 662–668 (2016)CrossRefGoogle Scholar
  41. 41.
    A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 Nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comp. Theor. Chem. 1109, 1–9 (2017)CrossRefGoogle Scholar
  42. 42.
    A.S. Rad, A. Mirabi, M. Peyravi, M. Mirzaei, Nickel decorated B12P12 nano-clusters as a strong adsorbent for SO2 adsorption; quantum chemical calculation. Can. J. Phys. (2017). doi:  10.1139/cjp-2017-0119 Google Scholar
  43. 43.
    A.S. Rad, K. Ayub, Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters. Mater. Chem. Phys. 194, 337–344 (2017)CrossRefGoogle Scholar
  44. 44.
    A.S. Rad, Chemisorption of BH3 and BF3 on aluminum nitride nanocluster: quantum-chemical investigations. J. Nanostruct. Chem. (2017). doi:  10.1007/s40097-017-0231-8 Google Scholar
  45. 45.
    A.S. Rad, A DFT study on the nickel-decorated B12P12 nanoclusters. Can. J. Chem. 95, 845–850 (2017)CrossRefGoogle Scholar
  46. 46.
    A.S. Rad, S.G. Ateni, H. Tayebi, P. Valipour, V.P. Foukolaei, First-principles DFT study of SO2 and SO3 adsorption on 2PANI: a model for polyaniline response. J. Sulfur. Chem. 37, 622–631 (2016)Google Scholar
  47. 47.
    A.S. Rad, N. Nasimi, M. Jafari, D. Sadeghi Shabestari, E. Gerami, Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sens. Actuat. B 220, 641–651 (2015)CrossRefGoogle Scholar
  48. 48.
    A.S. Rad, P. Valipour, A. Gholizade, S.E. Mousavinezhad, Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem. Phys. Lett. 639, 29–35 (2015)CrossRefGoogle Scholar
  49. 49.
    A.S. Rad, M. Esfehanian, S. Maleki, G. Gharati, Application of carbon nanostructures towards SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J. Sulfur. Chem. 37, 176–188 (2016)CrossRefGoogle Scholar
  50. 50.
    A.S. Rad, Terthiophene as a model sensor for some atmospheric gases: theoretical study. Mol. Phys. 114, 584–591 (2016)CrossRefGoogle Scholar
  51. 51.
    A.S. Rad, S. Sadeghi Shabestari, S. Mohseni, S. Alijantabar Aghouzi, Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 237, 204–210 (2016)CrossRefGoogle Scholar
  52. 52.
    Gaussian 09, Revision D.01, M.J. Frisch et al., (Gaussian, Inc., Wallingford, 2009)Google Scholar
  53. 53.
    M. Kazemi, A.S. Rad, Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: quantum chemical calculations. Superlatt. Microstruct. 106, 122–128 (2017)CrossRefGoogle Scholar
  54. 54.
    M.S.H. Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavid, Quantum Chemical Study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped. Phys. E 90(SWCNTs), 204–213 (2017)CrossRefGoogle Scholar
  55. 55.
    A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, Study on the electronic structure of Cr- and Ni-doped Fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diam. Relat. Mater. 77, 116–121 (2017)CrossRefGoogle Scholar
  56. 56.
    J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  57. 57.
    S. Picozzi, S. Santucci, L. Lozzi, L. Valentini, B. Delley, Ozone adsorption on carbon nanotubes: the role of Stone–Wales defects. J. Chem. Phys. 120, 7147 (2004)CrossRefGoogle Scholar
  58. 58.
    M.H. Rahman, J.S. Thakur, L. Rimai, S. Perooly, R. Naik, L. Zhang, Dual-mode operation of a Pd/AlN/SiC device for hydrogen sensing. Sens. Actuators B 129, 35–39 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran

Personalised recommendations