Supracolloidal Self-Assembly of Micro-Hosts and -Guests on Substrates

  • Aiju Li
  • Yu-Xi Wang
  • Hua Yu
  • Shao-Yong Lu
  • Yang Yang
  • Kun LiuEmail author


In this paper, we demonstrate a microcolloidal analogue of supramolecular host–guest system consisting of polymer microrings as micro-hosts and spherical particles as micro-guests. Polystyrene microrings with accurately controlled hollow cavities are fabricated by a two-step selective plasma etching method. The diameter and depth of the hollow ring can be controlled by different etching stage. The surface charge of microrings can be modified through sulfonation and/or layer-by-layer deposition of polyelectrolytes. Through electrostatic interactions, polystyrene microrings on substrates are used as micro-hosts to capture oppositely charged spherical micro-guests with assembly yields up to 98.7%. The micro-host/guest compounds are found to be stabled in aqueous solution even after peeled off from the substrate.


Self-assembly Supracolloidal Micro-hosts and micro-guests Electrostatic interactions Artificial molecules 



K. L. gratefully acknowledge financial support from the National Natural Science Foundation of China (21474040, 21534004, 21674042) and China’s Thousand Talent Plan for financial support. Y. Y. acknowledges financial support from the International Post-doctoral Exchange Fellowship Program 2013 funded by the Office of China Postdoctoral Council (20130036) and the China Postdoctoral Science Foundation (2013M540249, 2014-T70281).


  1. 1.
    M.-D. Lima, N. Li, A.-M. Jung, S. Fang, J. Oh, G.-M. Spinks, M.-E. Kozlov, C.-S. Haines, D. Suh, J. Foroughi, Science 338, 928–932 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Kaewsaneha, P. Tangboriboonrat, D. Polpanich, M. Eissa, A. Elaissari, ACS Appl. Mater. Interfaces 5, 1857–1869 (2013)CrossRefGoogle Scholar
  3. 3.
    I.-T. Papadas, V. Ioannis, T. Ioannis, S.-A. Gerasimos, Chem. Mater. 28, 2886–2896 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.-N. Zhao, L. Shang, Y. Cheng, Z.-Z. Gu, Acc. Chem. Res. 47, 3632–3642 (2014)CrossRefGoogle Scholar
  5. 5.
    L.-J. Hill, N. Pinna, K. Char, J. Pyun, Prog. Polym. Sci. 40, 85–120 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, E. Luijten, S. Granick, Annu. Rev. Phys. Chem. 66, 581–600 (2015)CrossRefGoogle Scholar
  7. 7.
    T.-A. Desai, Med. Eng. Phys. 22, 595–606 (2000)CrossRefGoogle Scholar
  8. 8.
    P. Xing, Y. Zhao, Adv. Mater. 28, 7304–7339 (2016)CrossRefGoogle Scholar
  9. 9.
    O.-A. Sherman, L.-L. Sohn, Nano Lett. 3, 37–38 (2003)CrossRefGoogle Scholar
  10. 10.
    G.-R. Yi, D.-J. Pine, S. Sacanna, J. Phys. Condens. Matter. 25, 193101–193113 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Yang, M.-K. Choi, D.-H. Kim, T. Hyeon, Adv. Mater. 28, 1176–1207 (2015)CrossRefGoogle Scholar
  12. 12.
    A.-B. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150–168 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Yannouleasa, U. Landman, Eur. Phys. J. D 16, 373–380 (2001)CrossRefGoogle Scholar
  14. 14.
    Y.-F. Wang, Y. Wang, D.-R. Breed, V.-N. Manoharan, L. Feng, A.-D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51–56 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Zerrouki, J. Baudry, D.J. Pine, P. Chaikin, J. Bibette, Nature 455, 380–382 (2008)CrossRefGoogle Scholar
  16. 16.
    K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Science 329, 197–200 (2010)CrossRefGoogle Scholar
  17. 17.
    Q. Chen, J.K. Whitmer, S. Jiang, S.-C. Bae, E. Luijten, S. Granick, Science 331, 199–201 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Cieplak, W. Kutner, Trends Biotechnol. 34, 922–941 (2016)CrossRefGoogle Scholar
  19. 19.
    F.-A. Aldaye, A.-L. Palmer, H.-F. Sleiman, Science 321, 1795–1799 (2008)CrossRefGoogle Scholar
  20. 20.
    M.-H. Hyun, J. Chromatogr. A 1467, 19–32 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Gontero, M. Lessard-Viger, D. Brouard, A.-G. Bracamonte, D. Boudreau, A.-V. Veglia, Microchem. J. 130, 316–328 (2017)CrossRefGoogle Scholar
  22. 22.
    G. Calzaferri, S. Huber, H. Maas, C. Minkowski, Angew. Chem. Int. Ed. 42, 3732–3758 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Vardhan, Adv. Synth. Catal. 357, 1351–1368 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Chen, J.-Y. Zhan, M.-M. Zhang, J. Zhang, J.-J. Tao, D.-T. Tang, A. Shen, H.-Y. Qiua, S.-C. Yin, Polym. Chem. 6, 25–29 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Yang, B. Yuan, X. Zhang, O.-A. Scherman, Acc. Chem. Res. 47, 2106–2115 (2014)CrossRefGoogle Scholar
  26. 26.
    X. Min, Y. Yong, X. Chi, Z. Zhang, F. Huang, Acc. Chem. Res. 45, 1294–1380 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Sohmiya, K. Saito, M. Ogawa, Sci. Technol. Adv. Mater. 16, 054201–054218 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Jie, Y. Zhou, Y. Yao, F. Huang, Chem. Soc. Rev. 44, 3568–3587 (2015)CrossRefGoogle Scholar
  29. 29.
    T. Adachi, M.-D. Ward, Acc. Chem. Res. 49, 2669–2679 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, C. Wang, Chem. Soc. Rev. 40, 94–101 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Huang, D. Raciti, S. Yu, L. Zhang, L. Deng, J. He, Y. Liu, N. Khashab, C. Wang, J. Gong, Z. Nie, J. Am. Chem. Soc. 138, 6332–6335 (2016)CrossRefGoogle Scholar
  32. 32.
    J.S. Song, M.A. Winnik, Macromolecules 38, 8300–8307 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Hazarika, K. Malkappa, T. Jana, Polym. Int. 61, 1425–1432 (2012)CrossRefGoogle Scholar
  34. 34.
    Z.Z. Ren, X.J. Zhang, X. Li, B. Yang, Nanotechnology 20, 065305–065312 (2009)CrossRefGoogle Scholar
  35. 35.
    W. Cai, W. Wang, L. Lu, T. Chen, Science 291, 2023–2029 (2013)Google Scholar
  36. 36.
    O. Tsuneo, S. Mitsuhiro, J. Colloid Interface Sci. 21, 3565–3571 (1999)Google Scholar
  37. 37.
    O.E. Cassidy, G. Rowley, I.W. Fletcher, S.F. Davies, D. Briggs, Int. J. Pharm. 182, 199–211 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations