Advertisement

Hydrothermally Synthesized Co3O4, α-Fe2O3, and CoFe2O4 Nanostructures: Efficient Nano-adsorbents for the Removal of Orange G Textile Dye from Aqueous Media

  • Mostafa Y. NassarEmail author
  • Talaat Y. MohamedEmail author
  • Ibrahim S. Ahmed
  • Naglaa M. Mohamed
  • Mai Khatab
Article

Abstract

We herein report the preparation of Co3O4, α-Fe2O3, and CoFe2O4 nanostructures through a hydrothermal method followed by a subsequent heat treatment. The as-prepared nanostructures exhibited good adsorption properties for the removal of Orange G (OG) textile dye. Various parameters influencing the adsorption process have been investigated such as contact time, initial dye concentration, ionic strength, adsorbent dose, and temperature. The maximum adsorption capacity values were found to be 33.3, 53.2, and 62.0 mg/g, for Co3O4, CoFe2O4, and α-Fe2O3 nano-adsorbents, respectively. The adsorption data fit the pseudo-second-order kinetic and Langmuir isotherm models well. Based on the calculated thermodynamic constants: ΔH° (3.660, 14.82, and 0.4710 kJ/mol), ΔG° (from −0.8090 to −1.109, from −0.6444 to −1.682, and from −3.665 to −3.943 kJ/mol), and Ea (9.277, 5.060, and 12.10 kJ/mol), the adsorption of OG dye on the aforementioned nano-adsorbents, respectively, was found to be endothermic, spontaneous, and physisorption process. In addition, because of the relatively high adsorption capacity and chemical stability, the as-synthesized α-Fe2O3 adsorbent is suggested as a promising candidate for the removal of OG textile dye from aqueous solutions.

Keywords

Co3O4 α-Fe2O3 CoFe2O4 nanostructures Orange G textile dye Adsorption Kinetics Thermodynamics 

Notes

Acknowledgements

The authors gratefully acknowledge the generous financial support of Benha University, Egypt.

References

  1. 1.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)CrossRefGoogle Scholar
  2. 2.
    T.A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 69, 58–66 (2012)CrossRefGoogle Scholar
  3. 3.
    N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, I.S. Pinto, Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269, 92–103 (2011)CrossRefGoogle Scholar
  4. 4.
    B. Kayan, B. Gözmen, M. Demirel, A.M. Gizir, Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques. J. Hazard. Mat. 177, 95–102 (2010)CrossRefGoogle Scholar
  5. 5.
    M.Y. Nassar, E.I. Ali, E.S. Zakaria, Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034–8050 (2017)CrossRefGoogle Scholar
  6. 6.
    M.Y. Nassar, M.M. Moustafa, M.M. Taha, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. RSC Adv. 6, 42180–42195 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Huang, Y. Cao, Z. Liu, Z. Deng, W. Wang, Application of titanate nanoflowers for dye removal: a comparative study with titanate nanotubes and nanowires. Chem. Eng. J. 191, 38–44 (2012)CrossRefGoogle Scholar
  8. 8.
    M.Y. Nassar, I.S. Ahmed, Template-free hydrothermal derived cobalt oxide nanopowders: synthesis, characterization, and removal of organic dyes. Mater. Res. Bull. 47, 2638–2645 (2012)CrossRefGoogle Scholar
  9. 9.
    H.R. Mahmoud, S.M. Ibrahim, S.A. El-Molla, Textile dye removal from aqueous solutions using cheap MgO nanomaterials: Adsorption kinetics, isotherm studies and thermodynamics. Adv. Powder Technol. 27, 223–231 (2016)CrossRefGoogle Scholar
  10. 10.
    R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: a review. J. Taiwan Inst. Chem. Eng. 42, 138–157 (2011)CrossRefGoogle Scholar
  11. 11.
    M.Y. Nassar, M. Khatab, Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6, 79688–79705 (2016)CrossRefGoogle Scholar
  12. 12.
    M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 329–334 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci. Rep. 5, 11873 (2015)CrossRefGoogle Scholar
  14. 14.
    M.Y. Nassar, A.A. Ali, A.S. Amin, A facile Pechini sol-gel synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Adv. 7, 30411–30421 (2017)Google Scholar
  15. 15.
    J. Zhang, M. Chen, L. Zhu, Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Adv. 6, 758–768 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, M. Chen, L. Zhu, Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: role of hydroxylamine. RSC Adv. 6, 47562–47569 (2016)CrossRefGoogle Scholar
  17. 17.
    M.Y. Nassar, H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis, characterization and biological activity of new 3-substitued-4-amino-5-hydrazino-1,2,4-triazole schiff bases and their Cu(II) complexes: a new approach to CuO nanoparticles for photocatalytic degradation of methylene blue dye. J. Inorg. Organomet. Polym. Mater. (2017). doi: 10.1007/s10904-017-0569-x
  18. 18.
    M.Y. Nassar, H.M. Aly, E.A. Abdelrahman, M.E. Moustafa, Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: a new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1143, 462–471 (2017)CrossRefGoogle Scholar
  19. 19.
    H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015)CrossRefGoogle Scholar
  20. 20.
    K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm. 77, 16–23 (2008)CrossRefGoogle Scholar
  22. 22.
    C.-K. Lee, S.-S. Liu, L.-C. Juang, C.-C. Wang, K.-S. Lin, M.-D. Lyu, Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mat. 147, 997–1005 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Nematollahzadeh, A. Shojaei, M. Karimi, Chemically modified organic/inorganic nanoporous composite particles for the adsorption of reactive black 5 from aqueous solution. React. Funct. Polym. 86, 7–15 (2015)CrossRefGoogle Scholar
  24. 24.
    M.Y. Nassar, A.S. Amin, I.S. Ahmed, S. Abdallah, Sphere-like Mn2O3 nanoparticles: facile hydrothermal synthesis and adsorption properties. J. Taiwan Inst. Chem. Eng. 64, 79–88 (2016)CrossRefGoogle Scholar
  25. 25.
    M.Y. Nassar, I.S. Ahmed, T.Y. Mohamed, M. Khatab, A controlled, template-free, and hydrothermal synthesis route to sphere-like [small alpha]-Fe2O3 nanostructures for textile dye removal. RSC Adv. 6, 20001–20013 (2016)CrossRefGoogle Scholar
  26. 26.
    O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, M.Y. Salem, Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 6, 11461–11480 (2016)CrossRefGoogle Scholar
  27. 27.
    A. El-Qanni, N.N. Nassar, G. Vitale, Experimental and computational modeling studies on silica-embedded NiO/MgO nanoparticles for adsorptive removal of organic pollutants from wastewater. RSC Adv. 7, 14021–14038 (2017)CrossRefGoogle Scholar
  28. 28.
    M.Y. Nassar, S. Abdallah, Facile controllable hydrothermal route for a porous CoMn2O4 nanostructure: synthesis, characterization, and textile dye removal from aqueous media. RSC Adv. 6, 84050–84067 (2016)CrossRefGoogle Scholar
  29. 29.
    M.Y. Nassar, Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Mater. Lett. 94, 112–115 (2013)CrossRefGoogle Scholar
  30. 30.
    M.Y. Nassar, I.S. Ahmed, Hydrothermal synthesis of cobalt carbonates using different counter ions: an efficient precursor to nano-sized cobalt oxide (Co3O4). Polyhedron 30, 2431–2437 (2011)CrossRefGoogle Scholar
  31. 31.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, One-pot solvothermal synthesis of novel cobalt salicylaldimine-urea complexes: a new approach to Co3O4 nanoparticles. J. Mol. Struct. 1050, 81–87 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Kosmulski, Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Yavari, N.M. Mahmodi, P. Teymouri, B. Shahmoradi, A. Maleki, Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability. J. Taiwan Inst. Chem. Eng. 59, 320–329 (2016)CrossRefGoogle Scholar
  34. 34.
    M.N. Sepehr, V. Sivasankar, M. Zarrabi, M. Senthil Kumar, Surface modification of pumice enhancing its fluoride adsorption capacity: an insight into kinetic and thermodynamic studies. Chem. Eng. J. 228, 192–204 (2013)CrossRefGoogle Scholar
  35. 35.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  36. 36.
    W.J. Wber, J.C. Morris, Proceedings of the International Conference on Water Pollution Symposium. (Pergamon Press, Oxford, 1962)Google Scholar
  37. 37.
    F.A. Batzias, D.K. Sidiras, Dye adsorption by prehydrolysed beech sawdust in batch and fixed-bed systems. Bioresour. Technol. 98, 1208–1217 (2007)CrossRefGoogle Scholar
  38. 38.
    C. Luo, Z. Tian, B. Yang, L. Zhang, S. Yan, Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J. 234, 256–265 (2013)CrossRefGoogle Scholar
  39. 39.
    N.M. Mahmoodi, F. Najafi, Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability. Mater. Res. Bull. 47, 1800–1809 (2012)CrossRefGoogle Scholar
  40. 40.
    G.D. Halsey, The Role of Surface Heterogeneity in Adsorption, ed. by V.I. Komarewsky, W.G. Frankenburg, E.K. Rideal, Advances in Catalysis, (Academic Press, London, 1952), pp. 259–269Google Scholar
  41. 41.
    T.G. Venkatesha, R. Viswanatha, Y. Arthoba Nayaka, B.K. Chethana, Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem. Eng. J. 198–199, 1–10 (2012)CrossRefGoogle Scholar
  42. 42.
    Y. Liu, Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 54, 1981–1985 (2009)CrossRefGoogle Scholar
  43. 43.
    R. Niwas, U. Gupta, A.A. Khan, K.G. Varshney, The adsorption of phosphamidon on the surface of styrene supported zirconium(IV) tungstophosphate: a thermodynamic study. Colloids Surf. A 164, 115–119 (2000)CrossRefGoogle Scholar
  44. 44.
    S.K. Milonjić, A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serb. Chem. Soc. 72, 1363–1367 (2007)CrossRefGoogle Scholar
  45. 45.
    X. Zhou, X. Zhou, The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem. Eng. Commun. 201, 1459–1467 (2014)CrossRefGoogle Scholar
  46. 46.
    P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 225, 137–146 (2017)CrossRefGoogle Scholar
  47. 47.
    H.N. Tran, S.-J. You, H.-P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J. Environ. Chem. Eng. 4, 2671–2682 (2016)CrossRefGoogle Scholar
  48. 48.
    A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 24, 33–42 (1987)CrossRefGoogle Scholar
  49. 49.
    M. Ghaedi, A. Hekmati Jah, S. Khodadoust, R. Sahraei, A. Daneshfar, A. Mihandoost, M.K. Purkait, Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 90, 22–27 (2012)CrossRefGoogle Scholar
  50. 50.
    J. Ma, Y. Jia, Y. Jing, Y. Yao, J. Sun, Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigm. 93, 1441–1446 (2012)CrossRefGoogle Scholar
  51. 51.
    M.K. Mondal, S. Singh, M. Umareddy, B. Dasgupta, Removal of Orange G from aqueous solution by hematite: isotherm and mass transfer studies. Korean J. Chem. Eng. 27, 1811–1815 (2010)CrossRefGoogle Scholar
  52. 52.
    S. Banerjee, M.C. Chattopadhyaya, Y. Chandra Sharma, Removal of an azo dye (Orange G) from aqueous solution using modified sawdust. J. Water Sanit. Hyg. Dev. 5, 235–243 (2015)CrossRefGoogle Scholar
  53. 53.
    N.M. Mubarak, Y.T. Fo, H.S. Al-Salim, J.N. Sahu, E.C. Abdullah, S. Nizamuddin, N.S. Jayakumar, P. Ganesan, Removal of methylene blue and Orange-G from waste water using magnetic biochar. Int. J. Nanosci. 14, 1550009 (2015)CrossRefGoogle Scholar
  54. 54.
    K.A.V.E.H. Arzani, B.G. Ashtiani, A.H.A. Kashi, Equilibrium and kinetic adsorption study of the removal of Orange-G Dye using carbon mesoporous material. J. Inorg. Mater. 27, 660–666 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations