Response Surface Optimisation of an Oxalate–Phosphate–Amine Metal–Organic Framework (OPA-MOF) of Iron and Urea

  • Manuela Anstoetz
  • Malcolm W. Clark
  • Lachlan H. Yee


Metal–organic framework (MOF) materials are well known for various application fields, such as engineering, and medical sciences. Here, the synthesis, and synthesis-optimisation of a novel oxalate-phosphate-amine MOF (OPA-MOF) for innovative agricultural applications is described, with urea as a structure-directing agent in a hydrothermal synthesis. Product properties conducive to proposed applications included yield, purity, elemental content (N, P, C), and oxalate-solubility, as important driving forces for functionality, which is based on the biomineralisation processes for the material’s decomposition in soil. A four-factors/two levels plus one (42+1) factorial design included replicated zero-point and factors of time, temperature, urea input rate and dilution factor. 19 experimental runs results provided data for a Response Surface Method optimisation to determine factors resulting in a desired product at highest efficiency. The saddle-ridge shaped response surface highlighted system robustness for two factors (time/urea-input), and sensitivity for temperature and dilution factor. Optimal factor combinations initially appeared counterintuitive compared to expected results from factorial design outcomes, however confirmatory experiments validate model predictions. Consequently, the optimisation process was strongly justified for accurate determination of the optimal OPA-MOF synthesis conditions.


Hydrothermal synthesis Optimisation Fertilizer, factorial design analysis Surface response modelling Organic metal frameworks Oxalates 



The authors would like to that the staff and students at Southern Cross University for the support and assistance in data and reference material accession, and in assistance with software use. Much of this study was funded by the Australian Grains Research Development Council (GRDC) Grant - Project No 51426, and partially supported through the Australian Synchrotron AS 2012/1 Application P4430. Southern Cross University provided Manuela Anstoetz an APA (Australian Postgraduate Award) to fund her PhD. We thank Professor Per Zetterlund and Dr Eh Hau Pan of the Centre for Advanced Macromolecular Design, University of New South Wales, for discussions and instrument access relating to FTIR results.

Supplementary material

10904_2017_547_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2626 KB)


  1. 1.
    M.J. Anderson, P.J. Whitcomb, DOE simplified, practical tools for effective experimentation, Third Edition. 3 edn, Productivity Press (2015)Google Scholar
  2. 2.
    S.N. Deming, Optimization. J. Res. Nat. Bur. Stand. 90(6), 479–483 (1985). doi: 10.6028/jres.090.045 CrossRefGoogle Scholar
  3. 3.
    G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13(1), 1–45 (1951)Google Scholar
  4. 4.
    T. Horibe, K. Watanabe, Crack identification of plates using genetic algorithm. JSME Int. J. Ser. Solid Mechanics Mater. Eng. 49 (3):403–410 (2006). doi: 10.1299/jsmea.49.403 Google Scholar
  5. 5.
    Y.S. Ren, J. Li, X.X. Duan, Application of the central composite design and response surface methodology to remove arsenic from industrial phosphorus by oxidation. Can. J. Chem. Eng. 89(3), 491–498 (2011). doi: 10.1002/cjce.20423 CrossRefGoogle Scholar
  6. 6.
    K.M. Lee, S.B. Hamid, Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-Chlorophenoxyacetic acid using UV-Active ZnO photocatalyst. Materials 8(1), 339–354 (2015). doi: 10.3390/ma8010339 CrossRefGoogle Scholar
  7. 7.
    J.H. Liu, Y.Y. Zhang, Y.M. Xia, F. Su, Optimization of immobilization conditions of candida antarctica lipase based on response surface methodology. Chem. Biochem. Eng. Quart. 24 (2):203–209(2010)Google Scholar
  8. 8.
    R.D.C. Soltani, A. Rezaee, A.R. Khataee, H. Godini, Optimisation of the operational parameters during a biological nitrification process using response surface methodology. Can. J. Chem. Eng. 92(1), 13–22 (2014). doi: 10.1002/cjce.21785 CrossRefGoogle Scholar
  9. 9.
    H. Shafaghat, G.D. Najafpour, P.S. Rezaei, M. Sharifzadeh, Optimal growth of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for the ethanol production: the application of the response surface methodology. Chem. Ind. Chem. Eng. Quart. 16 (2):199–206 (2010). doi: 10.2298/ciceq100201029s CrossRefGoogle Scholar
  10. 10.
    J.K. Sabet, C. Ghotbi, F. Dorkoosh, Application of response surface methodology for optimization of paracetamol particles formation by RESS method. J. Nanomater. (2012). doi: 10.1155/2012/340379 Google Scholar
  11. 11.
    M.Z. Karim, Z.Z. Chowdhury, S.B. Hamid, M.E. Ali, Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst. Materials 7(10):6982–6999 (2014). doi: 10.3390/ma7106982 CrossRefGoogle Scholar
  12. 12.
    S.E. Yalcinkaya, N. Yildiz, M. Sacak, A. Calimli, Preparation of polystyrene/montmorillonite nanocomposites: optimization by response surface methodology (RSM). Turk. J. Chem. 34(4), 581–592 (2010). doi: 10.3906/kim-0908-235 Google Scholar
  13. 13.
    M.J. Anderson, P.J. Whitcomb, (2004) Screening process factors in the presence of interaction. Paper presented at the Annual Quality Congress, TorontoGoogle Scholar
  14. 14.
    M. Shekarriz, R. Khadivi, S. Taghipoor, M. Eslamian, Systematic synthesis of high surface area silica nanoparticles in the sol-gel condition by using the central composite design (CCD) method. Can. J. Chem. Eng. 92(5), 828–834 (2014). doi: 10.1002/cjce.21921 CrossRefGoogle Scholar
  15. 15.
    N. Mizutani, T. Iwasaki, S. Watano, Response surface methodology study on magnetite nanoparticle formation under hydrothermal conditions. Nanomater. Nanotechnol. 5:13 (2015). doi: 10.5772/60649 CrossRefGoogle Scholar
  16. 16.
    A. Choudhury, S. Natarajan, CNR Rao, Hybrid open-framework iron phosphate-oxalates demonstrating a dual role of the oxalate unit. Chem. A Eur. J. 6(7), 1168–1175 (2000)CrossRefGoogle Scholar
  17. 17.
    N. Rajic, D. Stojakovic, D. Hanzel, N. Zabukovec Logar, V. Kaucic, Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent. Microporous Mesoporous Mater. 55 (3):313(2002)CrossRefGoogle Scholar
  18. 18.
    Y.C. Jiang, S.L. Wang, K.H. Lii, N. Nguyen, A. Ducouret, Synthesis, crystal structure, magnetic susceptibility, and Mössbauer spectroscopy of a mixed-valence organic-inorganic hybrid compound: (H3DETA)[Fe3(C2O4) 2(HPO4)2(PO4)] (DETA = diethylenetriamine). Chem. Mater. 15(8), 1633–1638 (2003). doi: 10.1021/cm021701t CrossRefGoogle Scholar
  19. 19.
    H.P. Jia, W. Li, Z.F. Ju, J. Zhang, Synthesis, crystal structure and magnetic properties of an oxalate-bridged diiron(III) complex {[FeIII(salapn)]2(C2O4)}. J. Mol. Struct. 833(1–3), 49–52 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Quaresma, V. André, M. Martins, M.T. Duarte, Zinc-formate metal-organic frameworks: Watch out for reactive solvents. J. Chem. Crystallogr. 45(4), 178–188 (2015). doi: 10.1007/s10870-015-0578-y CrossRefGoogle Scholar
  21. 21.
    C.N.R. Rao, A. Choudhury, S. Natarajan, S. Neeraj, R. Vaidhyanathan, Synthons and design in metal phosphates and oxalates with open architectures. Acta Chrystallograph. Sect. B 57:1–12 (2001)CrossRefGoogle Scholar
  22. 22.
    S. Natarajan, S. Mandal Open-framework structures of transition-metal compounds. Angewandte Chem. Int. Ed. 47 (26):4798–4828 (2008)CrossRefGoogle Scholar
  23. 23.
    C.N.R. Rao, A. Choudhury, Understanding the building-up process of three dimensional open-framework metal phosphates: acid degradation of the 3D structures to lower dimensional structures. Chem. Commun. 3:366–367 (2003). doi: 10.1039/b210037c Google Scholar
  24. 24.
    C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34(11), 2366–2388 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37(1), 191–214 (2008). doi: 10.1039/b618320b CrossRefGoogle Scholar
  26. 26.
    N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). doi: 10.1021/cr200304e CrossRefGoogle Scholar
  27. 27.
    X. Yang, J. Li, Y. Hou, S. Shi, Y. Shan, K2Fe(C2O4)(HPO4)(OH2) H2O: a layered oxalatophosphate hybrid material. Inorg. Chim. Acta 361(5), 1510–1514 (2008)CrossRefGoogle Scholar
  28. 28.
    Z.A.D. Lethbridge, S.K. Tiwary, A. Harrison, P. Lightfoot, Synthesis, structural relationships and magnetic properties of new amine-templated manganese(II) phosphate oxalate framework materials. J. Chem. Soc. Dalton Trans. 12:1904–1910 (2001)CrossRefGoogle Scholar
  29. 29.
    Z.A.D. Lethbridge, M.J. Smith, S.K. Tiwary, A. Harrison, P. Lighffoot, Synthesis of hybrid framework materials under “dry” hydrothermal conditions: crystal structure and magnetic properties of Mn2(H 2PO4)2(C2O4). Inorg. Chem. 43(1), 11–13 (2004)CrossRefGoogle Scholar
  30. 30.
    K. Mengel, E.A. Kirkby, Principles of plant nutrition. 5th edn, Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  31. 31.
    D. Chen, H. Suter, A. Islam, R. Edis, J. Freney, C.N. Walker, Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46:289–301 (2008)CrossRefGoogle Scholar
  32. 32.
    P.M. Chalk, E.T. Craswell, J.C. Polidoro, D. Chen, Fate and efficiency of 15 N-labelled slow- and controlled-release fertilizers. Nutr. Cycling Agroecosyst. (2015). doi: 10.1007/s10705-015-9697-2 Google Scholar
  33. 33.
    E. Verrecchia, O. Braissant, G. Cailleau, The oxalate-carbonate-pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: G.M. Gadd (ed) Fungi in biochemical Cycles. pp 289–310 (2006)Google Scholar
  34. 34.
    G. Cailleau, O. Braissant, E.P. Verrecchia, Turning sunlight into stone: The oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8(7), 1755–1767 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Bravo, G. Martin, M.M. David, G. Cailleau, E. Verrecchia, P. Junier, Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments. FEMS Microbiol. Lett. 348(2), 103–111 (2013)CrossRefGoogle Scholar
  36. 36.
    O. Braissant, G. Cailleau, M. Aragno, E.P. Verrecchia, Biologically induced mineralization in the tree Milicea excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2, 59–66 (2004)CrossRefGoogle Scholar
  37. 37.
    N. Sahin, Oxalotrophic bacteria. Res. Microbiol. 154(6), 399–407 (2003)CrossRefGoogle Scholar
  38. 38.
    G. Martin, M. Guggiari, D. Bravo, J. Zopfi, G. Cailleau, M. Aragno, D. Job, E. Verrecchia, P. Junier, Fungi, bacteria and soil pH: The oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 14(11), 2960–2970 (2012)CrossRefGoogle Scholar
  39. 39.
    D. Bravo, O. Braissant, G. Cailleau, E. Verrecchia, P. Junier, Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch. Microbiol. 197(1), 65–77 (2014)CrossRefGoogle Scholar
  40. 40.
    D.L. Jones, P.R. Darrah, Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166(2), 247–257 (1994)CrossRefGoogle Scholar
  41. 41.
    E.M. Bennett, S.R. Carpenter, N.F. Caraco, Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience 51(3), 227–234 (2001). doi: 10.1641/0006-3568(2001)051[0227:hioepa];2 CrossRefGoogle Scholar
  42. 42.
    E.P. Hodgkin, B.H. Hamilton, Fertilizers and eutrophication in southwestern Australia: setting the scene. Fertilizer Res. 36(2):95–103 (1993). doi: 10.1007/BF00747579 CrossRefGoogle Scholar
  43. 43.
    M. Anstoetz Synthesis and characterisation of a hybrid iron phosphate oxalate (Fe3P4O13(OH)3(C2O4)1.2(C3N2H12)1.2) for novel fertiliser applications environmental science and management, vol BEnvSc(Hons). Southern Cross University, Lismore (2010)Google Scholar
  44. 44.
    M. Anstoetz, M. Clark, L. Yee, Resolving topography of an electron beam-sensitive oxalate-phosphate-amine metal–organic framework (OPA-MOF). J. Mater. Sci. 51(3), 1562–1571 (2016). doi: 10.1007/s10853-015-9478-y CrossRefGoogle Scholar
  45. 45.
    Stat-Ease (2011) Design-Expert 8. Design-Expert edn. Stat-Ease Inc., 2021 East Hennepin Ave, Minneapolis MN 55413Google Scholar
  46. 46.
    Huber PJ (1992) Issues in Computational Data Analysis. In: Dodge Y, Whittaker J (eds) Computational Statistics. Physica-Verlag HD, pp 3–13. doi:10.1007/978-3-642-48678-4_1Google Scholar
  47. 47.
    M.J. Anderson, P.J. Whitcomb, RSM simplified, optimizing processs using response suface methods for design of experiments. CRC Press, Boca Raton (2005)Google Scholar
  48. 48.
    M. Anstoetz, N. Sharma, M. Clark, L.H. Yee, Characterization of an oxalate-phosphate-amine metal–organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture. J. Mater. Sci. 51(20), 9239–9252 (2016). doi: 10.1007/s10853-016-0171-6 CrossRefGoogle Scholar
  49. 49.
    G. Férey, Microporous solids: from organically templated inorganic skeletons to hybrid frameworks...ecumenism in chemistry. Chem. Mater. 13(10), 3084–3098 (2001). doi: 10.1021/cm011070n CrossRefGoogle Scholar
  50. 50.
    P. Knauth, J.E. Schoonmann, Nanostructured Materials Selected Synthesis Methods, Properties and Applications. (Kluwer Academic Publishers, Hingham, MA, 2002)Google Scholar
  51. 51.
    K.H. Lii, Y.F. Huang, V. Zima, C.Y. Huang, H.M. Lin, Y.C. Jiang, F.L. Liao, S.L. Wang, Syntheses and structures of organically templated iron phosphates. Chem. Mater. 10(10), 2599–2609 (1998)CrossRefGoogle Scholar
  52. 52.
    S. Natarajan, S. Neeraj, C.N.R. Rao, Amine phosphates as intermediates in the formation of open-framework structures. Angewandte Chem. Int. Ed. 38(23), 3480–3483 (1999)CrossRefGoogle Scholar
  53. 53.
    C.N.R. Rao, Basic building units, self-assembly and crystallization in the formation of complex inorganic open architectures. J. Chem. Sci. 113(5–6), 363–374 (2001). doi: 10.1007/BF02708777 CrossRefGoogle Scholar
  54. 54.
    Barthelmy D (1997–2009) webmineral. Accessed 2 March, 2010 2010
  55. 55.
    G.C. Derringer, A balancing act—optimizing a product’s properties. Qual. Prog. 27(6), 51–58 (1994)Google Scholar
  56. 56.
    Z.A.D. Lethbridge, G.J. Clarkson, S.S. Turner, R.I. Walton, Polymorphism and variable structural dimensionality in the iron(III) phosphate oxalate system: a new polymorph of 3D [Fe2(HPO4)2(C2O4)(H2O)2][middle dot]2H2O and the layered material [Fe2(HPO4)2(C2O4)(H2O)2]. Dalton Trans. 42, 9176–9182 (2009)CrossRefGoogle Scholar
  57. 57.
    D. Bas, I.H. Boyaci, Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78(3), 836–845 (2007). doi: 10.1016/j.jfoodeng.2005.11.024 CrossRefGoogle Scholar
  58. 58.
    J.V. Smith, W.L. Brown, Feldspar minerals: Volume 1 crystal structures, physical, chemical, and microtextural properties. Springer, Berlin (2012)Google Scholar
  59. 59.
    S. Mukherjee (2011) Applied mineralogy—applications in industry and environment. 1 edn. Springer, Dodrecht. doi: 10.1007/978-94-007-1162-4 Google Scholar
  60. 60.
    C.P. Muzzillo, C.E. Campbell, T.J. Anderson, Cu–Ga–In thermodynamics: experimental study, modeling, and implications for photovoltaics. J. Mater. Sci. 51(7), 3362–3379 (2015). doi: 10.1007/s10853-015-9651-3 CrossRefGoogle Scholar
  61. 61.
    Z.A.D. Lethbridge, P. Lightfoot, Mixed inorganic-organic anion frameworks: synthesis and crystal structure of Fe4(PO4)2(C2O4)(H2O)2. J. Solid State Chem. 143(1), 58–61 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.Marine Ecology Research Centre, School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations