Synthesis, Characterization of Nickel Ferrite and Its Uses as Humidity and LPG Sensors

  • Richa SrivastavaEmail author
  • B. C. Yadav
  • Monika Singh
  • T. P. Yadav


Nanostructured nickel ferrites (sample B1 and B2) were synthesized by chemical precipitation method using two different precipitating agents; sodium and ammonium hydroxides. The samples were characterized by using powder X-ray diffraction, scanning and transmission electron microscopy techniques. The X-ray diffraction revealed the formation of nickel ferrite with lattice parameter a = 8.3 Å and the average crystallite sizes of the samples B1 and B2 were 50 and 15 nm respectively. Surface morphology of the sample B2 exhibited the higher number of adsorption sites in comparison to B1. Transmissions electron microscopy observations confirmed the formation of nanostructured nickel ferrite. Further the pellets, thick and thin films of materials B1 and B2 were prepared and investigated with the exposition of humidity and LPG. Maximum average sensitivity for humidity was formed as 53.74 MΩ/%RH. Also the maximum value of sensitivity was found 62.3 for 4 vol% of LPG. The results were found to be reproducible up to 96 % after 3 months. Response and recovery times for LPG sensing were found to be 220 and 250 s. Best sensitivity, less hysteresis, small activation energy and good reproducibility identify that fabricated humidity and LPG sensors (B2) are promising and challenging.


Humidity SEM Sensitivity LPG sensor Nanostructure Pores 



B. C. Yadav acknowledges to DAE-BRNS for financial support in the form of project [2013/34/27/BRNS/2693]. Ms. Monika Singh is thankful to BRNS, DAE, Govt. of India for fellowship. Dr. Richa Srivastava is highly grateful to University Grants commission Delhi for ‘Post Doctoral fellowship for Women’, No. F.15-79/2011(SA-II).


  1. 1.
    S. Sikarwar, B.C. Yadav, Sens. Actuators A 233, 54–70 (2015)CrossRefGoogle Scholar
  2. 2.
    R. Srivastava, Int. J. Green Nanotechnol. Phys. Chem. 4, 1–8 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, Int. J. Green Nanotechnol. Phys. Chem. 4, 1–4 (2012)Google Scholar
  4. 4.
    Y. Tamaura, P.Q. Tu, S. Rojarayanont, H. Abe, Water Sci. Technol. 23, 399–404 (1993)Google Scholar
  5. 5.
    O. Lupan, V. Cretu, V. Postica, N. Ababii O. Polonskyi, V. Kaidas F. Schutt, Y. K. Mishra, E. Monaico, I. Tiginyanu, V. Sonte, T. Strunskus, F. Faupel, R. Adelung, Sens. Actuators B 224, 434–448 (2016)Google Scholar
  6. 6.
    T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonsa, M.R. Nunes, F.M. Costa, Solid State Sci. 5, 383–392 (2003)CrossRefGoogle Scholar
  7. 7.
    G.M. De, J. Appl. Phys. 65, 167–3172 (1989)Google Scholar
  8. 8.
    S. Singh, B.C. Yadav, M. Singh, R. Kothari, Int. J. Sci. Technol. Soc. 1, 5–21 (2015)Google Scholar
  9. 9.
    J. Grottrup, I. Paulowicz, A. Schuchardt, Y.K. Misra, Ceram. Int. 42, 8664–8676 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Srivastava, B.C. Yadav, Int. J. Green Nanotechnol. Phys. Chem. 4, 141–154 (2012)Google Scholar
  11. 11.
    T. Reimer, I. Paulowicz, R. Roder, S. Kaps, O. Lupan, S. Chemintz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, A.C.S. Appl, ACS Appl. Mater. Interfaces 6, 7806–7815 (2014)CrossRefGoogle Scholar
  12. 12.
    P.P. Singh, C. Bhakat, Int. J. Adv. Sci. Res. Technol. 3, 563–566 (2012)Google Scholar
  13. 13.
    T. Pannaparayil, R. Maranle, S. Komarneni, S.G. Sankar, J. Appl. Phys. 64, 5641 (1988)Google Scholar
  14. 14.
    M.H. Sousa, F.A. Tourinhou, J. Phys. Chem. B 105, 1168–1175 (2001)CrossRefGoogle Scholar
  15. 15.
    R. Srivastava, B.C. Yadav, J. Exp. Nanosci. 10, 703–717 (2014)CrossRefGoogle Scholar
  16. 16.
    D.E. Speliotis, J. Magn. Magn. Mater. 193, 29–51 (1999)CrossRefGoogle Scholar
  17. 17.
    P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horwitz, J. Appl. Phys. 85, 6338–6354 (1999)Google Scholar
  18. 18.
    A.S. Vaingankar, S.G. Kulkarni, M.S. Sagare, J. Phys. IV France 7, 155–156 (1997)Google Scholar
  19. 19.
    R. Srivastava, Int. J. Innov. Res. Sci. Eng. Technol. 2, 6567–6571 (2013)Google Scholar
  20. 20.
    C.Y. Tsay, K.S. Liu, T.F. Lin, I.N. Lin, J. Magn. Magn. Mater. 209, 189–192 (2000)CrossRefGoogle Scholar
  21. 21.
    T. Krishnaveni, B. Rajinikanth, V. Seetha, R. Raju, S.R. Murthy, J. Alloys Compd. 414, 282–286 (2006)Google Scholar
  22. 22.
    F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295–299 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, J. Am. Chem. Soc. 126, 2782 (2004)Google Scholar
  24. 24.
    T. Hyeon, Y. Chung, J. Park, S.S. Lee, Y.W. Kim, B.H. Park, J. Phys. Chem. B 106, 6831 (2002)CrossRefGoogle Scholar
  25. 25.
    Q. Chen, Z.J. Zhang, J. Appl. Phys. 73, 3156–3158 (1998)Google Scholar
  26. 26.
    X. Niu, W. Du, Sens. Actuators B 99, 405–409 (2004)Google Scholar
  27. 27.
    N. Ikenaga, Y. Ohgaito, H. Matsushima, T. Suzuki, Fuel 83, 661–669 (2004)Google Scholar
  28. 28.
    J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bokhimi, Appl. Catal. A 234, 137–144 (2002)CrossRefGoogle Scholar
  29. 29.
    J. Qiu, C. Wang, M. Gu, Mater. Sci. Eng. B 112, 1–4 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Fan, Z. Gu, L. Yang, F. Li, Chem. Eng. J. 155, 534–541 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Kobayashi, H. Shirai, M. Nunokawa, Ind. Eng. Chem. Res. 41, 2903–2909 (2002)CrossRefGoogle Scholar
  32. 32.
    A. Baykal, N. Kasapoglu, Y.K. Koseoglu, M.S. Toprak, H. Bayrakdar, J. Alloys Compd. 464, 514–518 (2008)Google Scholar
  33. 33.
    A. Alarifi, N.M. Deraz, S. Shaban, J. Alloys Compd. 486, 501–506 (2009)Google Scholar
  34. 34.
    J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 254, 5844–5848 (2008)CrossRefGoogle Scholar
  35. 35.
    O.H. Kwon, Y. Fukushima, M. Sugimoto, N. Hiratsuka, J. Phys. IV France 7, 165–166 (1997)Google Scholar
  36. 36.
    G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.C. Chaudhry, Adv. Mater. Lett. 3, 21–28 (2012)Google Scholar
  37. 37.
    S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87–92 (1998)Google Scholar
  38. 38.
    S. Li, J. Appl. Phys. 87, 6223–6225 (2000)Google Scholar
  39. 39.
    K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Chem. Mater. 10, 3445–3450 (1998)Google Scholar
  40. 40.
    C. Kim, J. Appl. Phys. 85, 5223–5225 (1999)CrossRefGoogle Scholar
  41. 41.
    J.F. Hochepied, P. Bonville, M.P. Pileni, J. Phys. Chem. 104, 905–912 (2000)Google Scholar
  42. 42.
    Y.I. Kim, D. Kim, C.S. Lee, Phys. B. (Amestherdam, Neth), 337, 42–51 (2003)Google Scholar
  43. 43.
    N. Feltin, M.P. Pileni, Langmuir 13, 3927–3933 (1997)Google Scholar
  44. 44.
    Y. Xiaojuan, C. Naisheng, S. Shuifa, L. Ersheng, H. Jinling, Sci. China 41, 442–448 (1998)Google Scholar
  45. 45.
    R. Srivastava, N. Verma, B.C. Yadav, Adv. Sci. Lett. 20, 917–922 (2014)Google Scholar
  46. 46.
    B.C. Yadav, R. Srivastava, A. Yadav, V. Srivastava, Sens. Lett. 6, 1–5 (2008)Google Scholar
  47. 47.
    B.C. Yadav, R. Srivastava, A. Yadav, Sens. Mater. 21, 87–94 (2009)Google Scholar
  48. 48.
    K. Raj, B. Moskowitz, R.J. Casciari, J. Magn. Magn. Mater. 149, 174 (1995)Google Scholar
  49. 49.
    S.C. Yeow, W.L. Ong, A.S.W. Wong, G.W. Ho, Sens. Actuators B Chem. 143, 295 (2009)Google Scholar
  50. 50.
    C.V.G. Reddy, K.K. Seela, S.V. Manorama, Int. J. Inorg. Mater. 2, 301 (2000)CrossRefGoogle Scholar
  51. 51.
    N.K. Chaudhari, J.S. Yu, J. Phys. Chem. C 112, 19957 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Richa Srivastava
    • 1
    Email author
  • B. C. Yadav
    • 1
  • Monika Singh
    • 1
  • T. P. Yadav
    • 2
  1. 1.Department of Applied PhysicsBabasaheb Bheemrao Ambedkar UniversityLucknowIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations