Cross-Sectional TEM Analysis of an ITO Surface Coated with Photosystem I and Molecular Wires



Photosystem I (PSI) from Thermosynechococcus elongatus was immobilized on ITO by using vitamin K1 exchange with artificial molecular wires in PSI. A PSI-modified surface was prepared for observation of lateral TEM images to provide an understanding of its interfacial structure. This paper describes the use of an ultramicrotome to prepare ultra-thin (< 20 nm) sections of PSI on ITO substrates. Cross-sectional TEM and energy-dispersive X-ray spectrometry supported that monolayer PSI was attached to the ITO electrode.


Cross-sectional TEM Photosynthesis Photosystem Ultramicrotome Energy-dispersive X-ray spectrometry 



The authors thank Dr. Osamu Oishi of the Institute for Molecular Science for technical assistance with sample preparation and observation by TEM and EDS. The present work was financially in part supported by Core Research for Evolutional Science and Technology (CREST) from JST, Tokyo Kasei Chemical Promotion foundation, Nippon Sheet Glass Foundation for Materials Science and Engineering, Precise Measurement Technology Promotion Foundation, Grant-in-Aids for Scientific Research (C) (No. 15K05604), Grant-in-Aids for Scientific Research (S) (No. 26220801), and Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (area 2509, Nos. 26110505, 26110506, 16H00957, and 16H00958) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. 1.
    E. Ruiz-Hitzky, K. Ariga, Y. Lvov (eds.), Bio-Inorganic Hybrid Nanomaterials (Wiley-VCH, Weinheim, 2008)Google Scholar
  2. 2.
    D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons (eds.), Biomaterials Science, 3rd edn: An Introduction to Materials in Medicine (Elsevier, New York, 2013)Google Scholar
  3. 3.
    P. Fratzl, J.W.C. Dunlop, R. Weinkamer, Materials Design Inspired by Nature: Function Through Inner Architecture (RSC Publishing, London, 2013)CrossRefGoogle Scholar
  4. 4.
    F. Wang, X. Liu, I. Willner, Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications. Adv. Mater. 25, 349 (2013)CrossRefGoogle Scholar
  5. 5.
    M.M. Najafpour, M.A. Isaloo, J.J. Eaton-Rye, T. Tomo, H. Nishihara, K. Satoh, R. Carpentier, J.-R. Shen, S.I. Allakhverdiev, Water exchange in manganese-based water oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides. Biochim. Biophys. Acta 1837, 1395 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Yamanoi, H. Nishihara, Solar-energy conversion technology using photosynthetic functionality of cyanobacteria. Kobunshi 56, 835 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Nelson, C.F. Yocum, Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Efrati, O. Yehezkeli, R. Tel-Vered, D. Micaeli, R. Nechushtai, I. Willner, Electrochemical switching of photoelectrochemical processes at CdS QDs and photosystem I-modified electrodes. ACS Nano 6, 9258 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Kato, M. Tsujii, T. Watanabe, Photoelectrochemical behavior of photosystem I complex in the presence of a viologen as mediator at SnO2 electrode. Electrochemistry 79, 845 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Mukherjee, M. May, M. Vaughn, B.D. Bruce, B. Khomami, Controlling the morphology of Photosystem I assembly on thiol-activated Au substrates. Langmuir 26, 16048 (2010)CrossRefGoogle Scholar
  11. 11.
    P.N. Ciesielski, A.M. Scott, C.J. Faulkner, B.J. Berron, D.E. Cliffel, G.K. Jennings, Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. ACS Nano 2, 2465 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Gorka, J. Schartner, A.V.D. Est, M. Rögner, J.H. Golbeck, Light-mediated hydrogen generation in Photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites. Biochemistry 53, 2295 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Terasaki, N. Yamamoto, K. Tamada, M. Hattori, T. Hiraga, A. Tohri, I. Sato, M. Iwai, M. Iwai, S. Taguchi, I. Enami, Y. Inoue, Y. Yamanoi, T. Yonezawa, K. Mizuno, M. Murata, H. Nishihara, S. Yoneyama, M. Minakata, T. Ohomori, M. Sakai, M. Fujii, Bio-photosensor: cyanobacterial photosystem I coupled with transistor via molecular wire. Biochim. Biophys. Acta 1767, 653 (2007)CrossRefGoogle Scholar
  14. 14.
    N. Terasaki, N. Yamamoto, T. Hiraga, Y. Yamanoi, T. Yonezawa, H. Nishihara, T. Ohmori, M. Sakai, M. Fujii, A. Tohri, M. Iwai, Y. Inoue, S. Yoneyama, M. Minakata, I. Enami, Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angew. Chem. Int. Ed. 48, 1585 (2009)CrossRefGoogle Scholar
  15. 15.
    N. Terasaki, N. Yamamoto, T. Hiraga, I. Sato, Y. Inoue, S. Yamada, Fabrication of novel photosystem I–gold nanoparticle hybrids and their photocurrent enhancement. Thin Solid Films 499, 153 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Miyachi, Y. Yamanoi, Y. Shibata, H. Matsumoto, K. Nakazato, M. Konno, K. Ito, Y. Inoue, H. Nishihara, A photosensing system composed of photosystem I, molecular wire, gold nanoparticle, and double surfactants in water. Chem. Commun. 46, 2557 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Yamanoi, N. Terasaki, M. Miyachi, Y. Inoue, H. Nishihara, Enhanced photocurrent production by photosystem I with modified viologen derivatives. Thin Solid Films 520, 5123 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 261, 217 (2009)CrossRefGoogle Scholar
  19. 19.
    O. Becker, K. Bange, Ultramicrotomy: an alternative cross section preparation for oxidic thin films on glass. Ultramicroscopy 52, 73 (1993)CrossRefGoogle Scholar
  20. 20.
    M. Miyachi, Y. Yamanoi, T. Yonezawa, H. Nishihara, M. Iwai, M. Konno, M. Iwai, Y. Inoue, Surface immobilization of PSI using vitamin K1-like molecular wires for fabrication of bio-photoelectrode. J. Nanosci. Nanotechnol. 9, 1722 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Haga, T. Takasugi, A. Tomie, M. Ishizuka, T. Yamada, M.D. Hossain, M. Inoue, Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl)pyridine derivatives. Dalton Trans. 10, 2069 (2003)CrossRefGoogle Scholar
  22. 22.
    M. Miyachi, M. Ohta, M. Nakai, Y. Kubota, Y. Yamanoi, T. Yonezawa, H. Nishihara, Surface bottom-up fabrication of porphyrin-terminated metal complex molecular wires with photo-electron conversion properties on ITO. Chem. Lett. 37, 404 (2008)CrossRefGoogle Scholar
  23. 23.
    P.N. Ciesielski, C.J. Faulkner, M.T. Irwin, J.M. Gregory, N.H. Tolk, D.E. Cliffel, G.K. Jennings, Enhanced photocurrent production by photosystem I multilayer assemblies. Adv. Funct. Mater. 20, 4048 (2010)CrossRefGoogle Scholar
  24. 24.
    P.N. Ciesielski, F.M. Hijazi, A.M. Scott, C.J. Faulkner, L. Beard, K. Emmett, S.J. Rosenthal, D.E. Cliffel, G.K. Jennings, Photosystem I based biohybrid photoelectrochemical cells. Bioresour. Tech. 10, 3047 (2010)CrossRefGoogle Scholar
  25. 25.
    G. LeBlanc, G. Chen, G.K. Jennings, D.E. Cliffel, Photoreduction of catalytic platinum particles using immobilized multilayers of photosystem I. Langmuir 28, 7952 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Biology, Faculty of ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations