Four New Metal–Organic Supramolecular Networks Based on Aromatic Acid and Flexible Bis(imidazole) Ligand: Synthesis, Structures and Luminescent Properties

  • Yong-Hong ZhouEmail author
  • Zhe-Yu Wang


Four new metal–organic supramolecular networks, namely, [Zn(H2pdc)2(H2O)2]·2H2O·bbi (1), {[Cd(Hpdc)2]·2H2O2·H2bbi}n (2), [Zn(BA)2(bbi)]n (3), and {[Cd(BA)2(bbi)]·H2O}n (4) (H3pdc = 3,5-pyrazoledicarboxylic acid, HBA = 3-hydroxybenzoic acid and bbi = 1,1′-(1,4-butanediyl)bis(imidazole)) have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analyses, and single-crystal X-ray diffraction analyses. Compound 1 possesses zero-dimensional (0D) structure, which is finally extended into a two-dimensional (2D) supramolecular network via O–H···O and C–H···O hydrogen bonds. Complex 2 displays a 2D network structure built from Cd2+ atoms interconnected by Hpdc2− ligands. The adjacent networks are further assembled into three-dimensional (3D) supramolecular structure through O–H···O hydrogen bonds. Compounds 3 and 4 show similar one-dimensional (1D) chains, in which four-coordinated Zn(II) atoms and six-coordinated Cd(II) atoms are bridged by bbi ligands. Through O–H···O and C-H···O hydrogen bonding interactions, the 1D chains are further packed into 2D and 3D supramolecular frameworks for 3 and 4, respectively. Obviously, the structural differences among compelxes 14 are attributed to the different central metal atoms and organic ligands. In addition, compounds 14 exhibit blue fluorescent emission in the solid state at room temperature.


3,5-Pyrazoledicarboxylic acid 3-Hydroxybenzoic acid Crystal structure Zinc(II) complex Cadmium(II) complex 



This work was financially supported by Scientific Research Foundation of Anhui Provincial Education Department (KJ2014A228).


  1. 1.
    C.D. Si, D.C. Hu, Y. Fan, X.Y. Dong, X.Q. Yao, Y.X. Yang, J.C. Liu, Cryst. Growth Des. 15, 5781 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Valderrey, G. Aragay, P. Ballester, Coord. Chem. Rev. 258, 137 (2014)CrossRefGoogle Scholar
  3. 3.
    A.G. Slater, A.I. Cooper, Science 348, 988 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Dhakshinamoorthy, A.M. Asiric, H. Garcia, Chem. Soc. Rev. 44, 1922 (2015)CrossRefGoogle Scholar
  5. 5.
    D.S. Li, J. Zhao, Y.P. Wu, B. Liu, L. Bai, K. Zou, M. Du, Inorg. Chem. 52, 8091 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Ariga, Y. Yamauchi, G. Rydzek, Q.M. Ji, Y. Yonamine, K.C.W. Wu, J.P. Hill, Chem. Lett. 43, 36 (2014)CrossRefGoogle Scholar
  7. 7.
    O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R.A. Fischer, C. Wöll, J. Am. Chem. Soc. 129, 15118 (2007)CrossRefGoogle Scholar
  8. 8.
    V. Malgras, Q.M. Ji, Y. Kamachi, T. Mori, F.K. Shieh, K.C.W. Wu, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn 88, 1171 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130, 5390 (2008)CrossRefGoogle Scholar
  10. 10.
    Z.R. Ranjbar, A. Morsali, J. Inorg. Organomet. Polym. 21, 421 (2011)CrossRefGoogle Scholar
  11. 11.
    F.Z. Karizi, V. Safarifard, S.K. Khani, A. Morsali, Ultrason. Sonochem. 23, 238 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Moeinian, K. Akhbari, J. Solid State Chem. 225, 459 (2015)CrossRefGoogle Scholar
  13. 13.
    M.M. Dong, L.L. He, Y.J. Fan, S.Q. Zang, H.W. Hou, T.C.W. Mak, Cryst. Growth Des. 13, 3353 (2013)CrossRefGoogle Scholar
  14. 14.
    R.P. Ye, J.X. Yang, X. Zhang, L. Zhang, Y.G. Yao, J. Mol. Struct. 1106, 192 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.H. Zhou, Y.P. Tian, J. Chem. Crystallogr. 43, 31 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.H. Zhou, J. Inorg. Organomet. Polym. 25, 535 (2015)CrossRefGoogle Scholar
  17. 17.
    Z.Y. Xiao, X. Yang, S.W. Zhao, D.B. Wang, Y. Yang, L. Wang, J. Solid State Chem. 234, 36 (2016)CrossRefGoogle Scholar
  18. 18.
    G.Q. Shi, B.B. Shi, Q. Wang, G. Li, Polyhedron 92, 137 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Li, S.Q. Zang, L.Y. Wang, T.C.W. Mak, Coord. Chem. Rev. 308, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.H. Zhou, Y.P. Tian, Bull. Korean Chem. Soc. 34, 2800 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.H. Zhou, J. Inorg. Organomet. Polym. 23, 458 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.H. Zhou, J. Inorg. Organomet. Polym. 23, 1189 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Yang, J.F. Ma, Y.Y. Liu, J.C. Ma, H.Q. Jia, N.H. Hu, Eur. J. Inorg. Chem. 23, 1208 (2006)CrossRefGoogle Scholar
  24. 24.
    G.M. Sheldrick, SHELXS 97 Program for the solution of crystal structure (University of Göttingen, Göttingen, 1997)Google Scholar
  25. 25.
    G.M. Sheldrick, SHELXTL 97 program for crystal structure refinement (University of Göttingen, Göttingen, 1997)Google Scholar
  26. 26.
    C.B. Liu, L. Liu, S.S. Wang, X.Y. Li, G.B. Che, H. Zhao, Z.L. Xu, J. Inorg. Organomet. Polym. 22, 1370 (2012)CrossRefGoogle Scholar
  27. 27.
    S.S. Chen, Y. Zhao, J. Fan, T.A. Okamura, Z.S. Bai, Z.H. Chen, W.Y. Sun, CrystEngComm 14, 3564 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.H. Zhou, Z.Y. Wang, Trans. Met. Chem. 40, 89 (2015)CrossRefGoogle Scholar
  29. 29.
    J.T. Shi, C.S. Zhou, Y.L. Liu, Z.G. Fang, R.L. Zhao, L.L. Xu, K.F. Yue, Z. Anorg, Allg. Chem. 639, 187 (2013)CrossRefGoogle Scholar
  30. 30.
    Y.H. Zhou, Bull. Korean Chem. Soc. 34, 1278 (2013)CrossRefGoogle Scholar
  31. 31.
    H.Y. Liu, H. Wu, J.F. Ma, Y.Y. Liu, B. Liu, J. Yang, Cryst. Growth Des. 10, 4795 (2010)CrossRefGoogle Scholar
  32. 32.
    X.J. Zheng, L.P. Jin, S. Gao, S.Z. Lu, New J. Chem. 29, 798 (2005)CrossRefGoogle Scholar
  33. 33.
    J.G. Lin, S.Q. Zang, Z.F. Tian, Y.Z. Li, Y.Y. Xu, H.Z. Zhu, Q.J. Meng, CrystEngComm 9, 915 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceHuaibei Normal UniversityHuaibeiPeople’s Republic of China
  2. 2.No. 1 High School of HuaibeiHuaibeiPeople’s Republic of China

Personalised recommendations