Advertisement

Double Stranded Helical Organo-lead 3D-Supramolecular Coordination Polymer Containing Copper Cyanide and Phenanthroline Ligand as Antimicrobial Agent

  • Safaa Eldin H. EtaiwEmail author
  • Safaa N. Abdou
Article

Abstract

The supramolecular coordination polymer (SCP) [Cu(CN)2(Me3Pb)phen]; 1 is formed by self-assembly of K3[Cu(CN)4], Me3PbCl and 1,10-phenanthroline (phen) ligand at ambient conditions. The copper center is coordinated to two ordered cyanide ligands and two nitrogen atoms of the phen ligand forming distorted tetrahedral configuration. The structure of 1 consists of repeating units of the tetrahedral Cu(phen)(CN)2 fragments connected by the (Me3Pb)+ cations forming1-D helical chains. The 1-D helical chains are arranged in a unique way to construct a right-helical and a left-helical chain creating a double-helical 3-D network arranged in a unique A···A···A fashion. H-bonds and π–π stacking play an important role in stabilizing the structure of 1. IR, 1H-NMR, electronic and luminescence spectra as well as thermal analysis are also investigated. The SCP 1 has high antimicrobial activity against E. coli and S. aureus and it also exhibits good activity against the fungal strains, C. albicans and A. Niger. The results of growth inhibiting effect indicated that the inhibitory effect is increased with an increase in concentration of the SCP 1.

Keywords

Organo-lead Cuprous cyanide 1,10-Phenanthroline Crystal structure, helical structure Spectra Antimicrobial activity 

References

  1. 1.
    Y.-Z. Ke, Y. Nagata, T. Yamada, M. Suginome, Angew. Chem. Int. Ed. 54, 9333–9337 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Zurro, S. Asmus, S. Beckendorf, C.M. Lichtenfeld, O.G. Mancheno, J. Am. Chem. Soc. 136, 13999–14002 (2014)CrossRefGoogle Scholar
  3. 3.
    J.-M. Lehn, Supramolecular Chemistry (Wiley, Weinheim, 1995)CrossRefGoogle Scholar
  4. 4.
    S.E.H. Etaiw, S.N. Abdou, A.A. Faheim, J. Coord. Chem. 68(3), 491–506 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Zhu, L. Zhang, J. Wang, Z. Ma, W. Xu, J. Li, A. Shan, Acta Biomater. 18, 155–167 (2015)CrossRefGoogle Scholar
  6. 6.
    A.M. Youssef, E.G. Neeland, E.B. Villanueva, M.S. White, I.M. El-Ashmawy, B. Patrick, A. Klegeris, A.S. Abd-El-Aziz, Bioorg. Med. Chem. 18, 5685–5696 (2010)CrossRefGoogle Scholar
  7. 7.
    H.W. Kuai, X.C. Cheng, X.H. Zhu, Polyhedron 50, 390–397 (2013)CrossRefGoogle Scholar
  8. 8.
    W.H. Huang, L. Hou, B. Liu, L. Cui, Y.Y. Wang, Q.-Z. Shi, Inorg. Chim. Acta 382, 13–18 (2012)CrossRefGoogle Scholar
  9. 9.
    X. He, C.Z. Lu, D.Q. Yuan, S.M. Chen, J.T. Chen, Eur. J. Inorg. Chem. 11, 2181–2188 (2005)CrossRefGoogle Scholar
  10. 10.
    X. He, C.Z. Lu, C.D. Wu, L.J. Chen, Eur. J. Inorg. Chem. 12, 2491–2503 (2006)CrossRefGoogle Scholar
  11. 11.
    V. Soghomonian, Q. Chen, R.C. Haushalter, J. Zubieta, C.J. O’Connor, Science 259, 1596–1599 (1993)CrossRefGoogle Scholar
  12. 12.
    C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 97, 2005–2062 (1997)CrossRefGoogle Scholar
  13. 13.
    F.G. Gelalcha, M. Schulz, R. Kluge, J. Sieler, J. Chem. Soc. Dalton Trans. 2517–2521 (2002)Google Scholar
  14. 14.
    D. Sun, R. Cao, Y.-Q. Sun, W.-H. Bi, X. Li, M.-C. Hong, Y.-J. Zhao, Eur. J. Inorg. Chem. 38–41 (2003)Google Scholar
  15. 15.
    D.L. Reger, R.F. Semeniuc, M.D. Smith, Eur. J. Inorg. Chem. 543–546 (2002)Google Scholar
  16. 16.
    J.M. Rowland, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 41, 1545–1549 (2002)CrossRefGoogle Scholar
  17. 17.
    M. Kudo, A. Tanatani, New J. Chem. 39, 3190–3196 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Ji, L. Jing, S. Lin, X. Deng, P. Zhu, X. Zhang, Dyes Pigment 106, 176–181 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Chen, G. Qin, L. Yang, N. Yang, Chin. J. Chem. 33, 1–4 (2015). doi: 10.1002/cjoc.201400819 CrossRefGoogle Scholar
  20. 20.
    P.M. Forster, A.R. Burbank, C. Livage, G. Férey, A. K. Cheetham, Chem. Commun. 368–369 (2004)Google Scholar
  21. 21.
    A.J. Blake, N.R. Brooks, N.R. Champness, P.A. Cooke, A.M. Deveson, D. Fenske, P. Hubberstey, W.-S. Li, M. Schröder, J. Chem. Soc. Dalton Trans. 2103–2110 (1999)Google Scholar
  22. 22.
    X.-X. Hu, J.-Q. Xu, P. Cheng, X.-Y. Chen, X.-B. Cui, J.-F. Song, G.-D. Yang, T.-G. Wang, Inorg. Chem. 43, 2261–2266 (2004)CrossRefGoogle Scholar
  23. 23.
    M.A. Withersby, A.J. Blake, N.R. Champness, P.A. Cooke, P. Hubberstey, W.-S. Li, M. Schröder, Inorg. Chem. 38, 2259–2266 (1999)CrossRefGoogle Scholar
  24. 24.
    J.R. Black, N.R. Champness, W. Levason, G. Reid, J. Chem.Soc. Chem. Commun. 1277–1278 (1995)Google Scholar
  25. 25.
    E. Chelebaeva, J. Larionova, Y. Guari, R.A. Sa Ferreira, L.D. Carlos, F.A. Almeida Paz, A. Trifonov, C. Guerin, Inorg. Chem. 47, 775–777 (2008)CrossRefGoogle Scholar
  26. 26.
    B.A. Maynard, R.E. Sykora, J.T. Maguec, A.E.V. Gorden, Chem. Commun. 46, 4944–4946 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Larionova, Y. Guari, C. Blanc, P. Dieudonne, A. Tokarev, C. Guerin, Langmuir 25, 1138–1147 (2009)CrossRefGoogle Scholar
  28. 28.
    A.P. Baioni, M. Vidotti, P.A. Fiorito, E.A. Ponzio, S.I.C. de Torresi, Langmuir 23, 6796–6800 (2007)CrossRefGoogle Scholar
  29. 29.
    M.L.Toma, R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, Chem. Commun. 1850–1851 (2003)Google Scholar
  30. 30.
    M. Pilkington, S. Decurtins, Compr. Coord. Chem. II 7, 177–179 (2004)Google Scholar
  31. 31.
    A. Figuerola, C. Díaz, J. Ribas, V. Tangoulis, J. Granell, F. Lloret, J. Mahía, M. Maestro, Inorg. Chem. 42, 641–649 (2003)CrossRefGoogle Scholar
  32. 32.
    I. Muga, J.M. Gutiérrez-Zorrilla, P. Vitoria, P. Román, L. Lezama, J.I. Beitia, Eur. J. Inorg. Chem. 9, 1886–1893 (2004)CrossRefGoogle Scholar
  33. 33.
    S.E.H. Etaiw, S.N. Abdou, Spectrochim. Acta, Part A 135, 617–623 (2015)CrossRefGoogle Scholar
  34. 34.
    S.E.H. Etaiw, T.A. Fayed, S.N. Abdou, J. Organomet. Chem. 695, 1918–1928 (2010)CrossRefGoogle Scholar
  35. 35.
    S.E.H. Etaiw, T.A. Fayed, M.B. El-zaria, S.N. Abdou, J. Inorg. Organomet. Polym. 21, 36–42 (2011)CrossRefGoogle Scholar
  36. 36.
    S.E.H. Etaiw, S.N. Abdou, J. Inorg. Organomet. Polym. 22, 780–790 (2012)CrossRefGoogle Scholar
  37. 37.
    S.E.H. Etaiw, S.N. Abdou, J. Inorg. Organomet. Polym. 23, 1296–1304 (2013)CrossRefGoogle Scholar
  38. 38.
    S.E.H. Etaiw, S.A. Amer, M.M. El-Bendary, J. Inorg. Organomet. Polym. 21, 662–672 (2011)CrossRefGoogle Scholar
  39. 39.
    A.M.A. Ibrahim, E. Siebel, R.D. Fischer, Inorg. Chem. 37, 3521–3525 (1998)CrossRefGoogle Scholar
  40. 40.
    J.W. Eastes, W.M. Burgess, J. Am. Chem. Soc. 64, 1187–1189 (1942)CrossRefGoogle Scholar
  41. 41.
    E. Siebel, A.M.A. Ibrahim, R.D. Fischer, Inorg. Chem. 38, 2530–2532 (1999)CrossRefGoogle Scholar
  42. 42.
    H. Hanika-Heidl, S.E.H. Etaiw, MSh Ibrahim, A.S. Badr El-din, R.D. Fischer, Organomet. Chem. 684, 329–337 (2003)CrossRefGoogle Scholar
  43. 43.
    E.M. Poll, J.U. Schutze, R.D. Fischer, N.A. Davies, D.C. Apperley, R.K. Harris, J. Organomet. Chem. 621, 254–260 (2001)CrossRefGoogle Scholar
  44. 44.
    S.E.H. Etaiw, S.N. Abdou, J. Inorg. Organomet. Polym. 20, 622–627 (2010)CrossRefGoogle Scholar
  45. 45.
    R.A. Penneman, L.H. Jones, J. Chem. Phys. 24, 293–296 (1956)CrossRefGoogle Scholar
  46. 46.
    S.J. Hibble, S.G. Eversfield, A.R. Cowley, A.M. Chippindale, Angew. Chem. Int. Ed. 43, 628–630 (2004)CrossRefGoogle Scholar
  47. 47.
    M. Nilson, Acta Chem. Scand. B 36, 125–126 (1982)CrossRefGoogle Scholar
  48. 48.
    G.A. Bowmaker, K.C. Lim, B.W. Skelton, A.H. White, Z. Naturforsch. 59b, 1264–1276 (2004)Google Scholar
  49. 49.
    H.H. Jalfe, M. Orechin, Theory and Applications of Ultraviolet Spectroscopy, 5th edn. (Wiley, New York, 1970)Google Scholar
  50. 50.
    K. Yamamote, T. Takemura, H. Baba, Bull. Chem. Soc. Jpn 51, 729–732 (1978)CrossRefGoogle Scholar
  51. 51.
    N. Armaroli, L.D. Cola, V. Balzani, J.-P. Sauvage, C. Dietrich-Buchecker, J.-M. Kern, J. Chem. Soc., Faraday Trans. 88, 553–556 (1992)CrossRefGoogle Scholar
  52. 52.
    B.N. Bandyopadhyay, A. Harriman, J. Chem. Soc. Faraday Trans. 73, 663–674 (1977)CrossRefGoogle Scholar
  53. 53.
    G.M. Badger, I.S. Walker, J. Chem. Soc. 122–126 (1956)Google Scholar
  54. 54.
    M.J. Lim, C.A. Murray, T.A. Tronic, K.E. deKrafft, A.N. Le, J.C. deButts, R.D. Pike, H. Lu, H.H. Patterso, Inorg. Chem. 47, 6931–6947 (2008)CrossRefGoogle Scholar
  55. 55.
    C.A. Bayse, T.P. Brewster, R.D. Pike, Inorg. Chem. 48, 174–182 (2009)CrossRefGoogle Scholar
  56. 56.
    S.K. Mandal, K. Nag, J. Chem. Soc. Dalton Trans. 2429–2434 (1983)Google Scholar
  57. 57.
    M.A. Zoroddu, S. Zanetti, R. Pongi, R. Basosi, J. Inorg. Biochem. 63, 291–296 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Science, Department of ChemistryUniversity of TantaTantaEgypt
  2. 2.Chemistry Department, Faculty of Education and Science (Khourma)University of TaifTaifSaudi Arabia

Personalised recommendations