Structure, Characterization and Photocatalytic Activity of a Series of Well-Established Covalent Heterojunction Coordination Polymers

  • Xue Gao
  • Che WangEmail author
  • Feng-Ying Bai
  • Qing-lin Guan
  • Ji-Xiao Wang
  • Si-Yue Wei
  • Xiao-Xi Zhang
  • Xue-Ting Xu
  • Yong-heng XingEmail author


Six novel coordination polymers {Co(HCOO)2(4,4′-bipy)} n (1), {[Ni(4,4′-bipy)(OH)2(H2O)2]·suc·2H2O} n (2), {Ni(HCOO)2(4,4′-bipy)} n (3), {Zn(HCOO)2(4,4′-bipy)} n (4), {Cu(HCOO)2(4,4′-bipy)} n (5) and {[Cu(ox)(2,2′-bipy)]·2H2O} n (6) (suc succinic acid, ox oxalic cid) based on pyridine derivatives and carboxylates as ligands were designed and synthesized. The coordination polymers were characterized by elemental analysis, IR and UV–Vis spectra, powder X-ray diffraction, the thermo gravimetric analyses and single-crystal diffraction analysis. The structure analysis showed that the central metal atoms in coordination polymers 1, 2, 3, 4 and 6 all were six-coordination modes, forming distorted octahedron geometries. Cu atom in the coordination polymer 5 was four-coordination mode, forming square planar coordination geometry. While in the coordination polymers 1, 3 and 4, two metal centers were connected by bridging coordination fashions of formic acid ligand, forming a three-dimensional network structure, and in the coordination polymer 6, the two metal centers were connected by bridging coordination fashions of oxalic acid ligand, forming one-dimensional chain. In addition, the photocatalytic activity of a series of covalent heterojunction coordination polymers was studied.


Transition metal coordination polymer 2,2-Bipyridine 4,4-Bipyridine Crystal structure Photocatalytic activity 



This work was supported by the grants of the National Natural Science Foundation of China (Grant No. 21071071, 21371086). Guangxi Key Laboratory of Information Materials, Guilin University of ElectronicTechnology, P. R. China (Project No. 1210908-06-K) and Commonweal Research Foundation of Liaoning province in China (No. 2014003019) for financial assistance.

Supplementary material

10904_2015_215_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1662 kb)


  1. 1.
    Q.L. Guan, Z. Liu, W.J. Wei, Y.H. Xing, J. Liu, R. Zhang, Y.N. Hou, X. Wang, F.Y. Bai, New J. Chem. 38, 32 (2014)Google Scholar
  2. 2.
    J.J. Henkelis, C.J. Carruthers, S.E. Chambers, R. Clowes, A.I. Cooper, J. Fisher, M.J. Hardie, J. Am. Chem. Soc. 136, 14393 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Tornatzky, A. Kannenberg, S. Blechert, Dalton Trans. 41, 8215 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Asniza, A.M. Issam, H.P.S. Abdul Khalil, Sains Malays. 40, 765 (2011)Google Scholar
  5. 5.
    N. Abhishek, D. Sumit Kumar, D. Sujata, N.M. Rudra, D. Joydev, D.S. Krishna, Mol. Cancer 13, 57 (2014)CrossRefGoogle Scholar
  6. 6.
    G.L. Law, K.L. Wong, K.K. Lau, S.T. Lap, P.A. Tanner, F. Kuo, W.T. Wong, J. Mater. Chem. 20, 4074 (2010)CrossRefGoogle Scholar
  7. 7.
    X.D. Chen, H.F. Wu, X.H. Zhao, X.J. Zhao, M. Du, Cryst. Growth Des. 7, 124 (2007)CrossRefGoogle Scholar
  8. 8.
    J.Q. Liu, Y.Y. Wang, Y.N. Zhang, P. Liu, Q.Z. Shi, S.R. Batten, Eur. J. Inorg. Chem. 1, 147 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Du, Z.H. Zhang, L.F. Tang, X.G. Wang, X.J. Zhao, S.R. Batten, Chem. Eur. J. 13, 2578 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Carlucci, G. Ciani, D.M. Proserpio, S. Rizzato, New J. Chem. 27, 483 (2003)CrossRefGoogle Scholar
  11. 11.
    M.A. Withersby, A.J. Blake, N.R. Champness, P.A. Cooke, P. Hubberstey, W.S. Li, M. Schroder, Inorg. Chem. 38, 2259 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Hirotsu, N. Kuwamura, I. Kinoshita, M. Kojima, Y. Yoshikawa, K. Ueno, Dalton Trans. 37, 7678 (2009)CrossRefGoogle Scholar
  13. 13.
    K.J. Wei, J. Ni, J. Gao, Y. Liu, Q.L. Liu, Eur. J. Inorg. Chem. 24, 3868 (2007)CrossRefGoogle Scholar
  14. 14.
    J.L. Du, T.L. Hu, J.R. Li, S.M. Zhang, X.H. Bu, Eur. J. Inorg. Chem. 7, 1059 (2008)CrossRefGoogle Scholar
  15. 15.
    R.Q. Fang, X.M. Zhang, Inorg. Chem. 45, 4801 (2006)CrossRefGoogle Scholar
  16. 16.
    F.Y. Cui, K.L. Huang, Y.Q. Xu, Z.G. Han, X. Liu, Y.N. Chi, C.W. Hu, CrystEngComm 11, 2757 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Plabst, L.B. McCusker, T. Bein, J. Am. Chem. Soc. 131, 18112 (2009)CrossRefGoogle Scholar
  18. 18.
    D.C. Zhong, J.B. Lin, W.G. Lu, L. Jiang, T.B. Lu, Inorg. Chem. 48, 8656 (2009)CrossRefGoogle Scholar
  19. 19.
    S.S. Bao, L.F. Ma, Y. Wang, L. Fang, C.J. Zhu, Y.Z. Li, L.M. Zheng, Chem. Eur. J. 13, 2333 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Horike, M. Dinca, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130, 5854 (2008)CrossRefGoogle Scholar
  21. 21.
    B.L. Chen, L.B. Wang, F. Zapata, G.D. Qian, E.M. Lobkovsky, J. Am. Chem. Soc. 130, 6718 (2008)CrossRefGoogle Scholar
  22. 22.
    B.L. Chen, L.B. Wang, Y.Q. Xiao, F.R. Fronczek, M. Xue, Y.J. Cui, G.D. Qian, Angew. Chem. Int. Ed. 48, 500 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Han, Z. Yu, X. He, P. Li, Y. Wang, C.Y. Quan, Inorg. Chim. Acta 388, 98 (2012)CrossRefGoogle Scholar
  24. 24.
    C.H. Jiao, C.H. He, J.C. Geng, G.H. Cui, Transit. Met. Chem. 37, 17 (2012)CrossRefGoogle Scholar
  25. 25.
    M.D. Johnson, V.C. Reinsborough, S. Ward, Inorg. Chem. 31, 1085 (1992)CrossRefGoogle Scholar
  26. 26.
    B.H. Ye, M.L. Tong, X.M. Chen, Coordin. Chem. Rev. 249, 545 (2005)Google Scholar
  27. 27.
    X. Shi, G. Zhu, Q. Fang, G. Wu, G. Tian, R.W. Wang, D.L. Zhang, M. Xue, S.L. Qiu, Eur. J. Inorg. Chem. 1, 185 (2004)CrossRefGoogle Scholar
  28. 28.
    K.Z. Shao, Y.H. Zhao, Y.Q. Lan, X.L. Wang, Z.M. Su, R.S. Wang, CrystEngComm 13, 889 (2011)CrossRefGoogle Scholar
  29. 29.
    G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data (University of Göttingen, Göttingen, 1996)Google Scholar
  30. 30.
    G.M. Sheldrick, SHELXS 97, Program for Crystal Structure and Refinement (University of Göttingen, Göttingen, 1997)Google Scholar
  31. 31.
    S.Y. Wei, F.Y. Bai, G. Song, Y.N. Hou, X.T. Xu, X.X. Zhang, H.Z. Zhang, Y.H. Xing, Commun. Inorg. Synth. 2, 1 (2014)Google Scholar
  32. 32.
    J. Marrot, K. Barthelet, C. Simonnet, D. Riou, C.R. Chim. 8, 8 (2005)CrossRefGoogle Scholar
  33. 33.
    J.W. Ran, X.Y. Li, Q.D. Zhao, Z.P. Qu, H. Li, Y. Shi, G.H. Chen, Inorg. Chem. Commun. 13, 526 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xue Gao
    • 1
  • Che Wang
    • 1
    Email author
  • Feng-Ying Bai
    • 2
  • Qing-lin Guan
    • 1
  • Ji-Xiao Wang
    • 1
  • Si-Yue Wei
    • 1
  • Xiao-Xi Zhang
    • 1
  • Xue-Ting Xu
    • 1
  • Yong-heng Xing
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianChina
  2. 2.School of Life ScienceLiaoning Normal UniversityDalianChina

Personalised recommendations