Effect of the Core Structure on the Sequential Coordination of Phenylazomethine Dendrimer

  • Ken Albrecht
  • Noriko Sakane
  • Yusuke Inomata
  • Kimihisa Yamamoto
Article
  • 271 Downloads

Abstract

Phenylazomethine dendrimer (DPA) is a dendritic ligand that coordinates to various Lewis acids in a stepwise radial fashion. Second generation para-substituted and meta-substituted phenylazomethine dendrimers with p-phenylenediamine and m-phenylenediamine core were synthesized and the coordination sequence was investigated by UV–vis titration. Stepwise radial complexation from the outer layer was observed for the m-phenylenediamine core meta-substituted phenylazomethine dendrimer (m-mG2). Other three dendrimers showed stepwise radial complexation from the inner layer. The reason could be explained with the binding constant of the 1st generation dendrimer (model of the 1st layer). This is suggesting that for controlling the coordination sequence of DPA, not only the dendron structure is important, but also the structure of the core is an important factor.

Keywords

Phenylazomethine Dendrimer Dendritic ligand Potential gradient Sequential coordination 

Notes

Acknowledgments

This work was supported in part by the CREST program of the Japan Science and Technology (JST) Agency, Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions”, and by JSPS KAKENHI Grant Numbers 26410128, 80220458, and 21108009.

Supplementary material

10904_2014_116_MOESM1_ESM.doc (9.4 mb)
Supplementary material 1 (DOC 9,653 kb)

References

  1. 1.
    J.R. Winkler, H.B. Gray, Chem. Rev. 114, 3369 (2014)CrossRefGoogle Scholar
  2. 2.
    C.J. Reedy, B.R. Gibney, Chem. Rev. 104, 617 (2004)CrossRefGoogle Scholar
  3. 3.
    J.P. McEvoy, G.W. Brudvig, Chem. Rev. 106, 4455 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Friedle, E. Reisner, S.J. Lippard, Chem. Soc. Rev. 39, 2768 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Sugimoto, H. Tsukube, Chem. Soc. Rev. 37, 2609 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Kovbasyuk, R. Krämer, Chem. Rev. 104, 3161 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, Acc. Chem. Res. 34, 865 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Albrecht, Y. Kasai, Y. Kuramoto, K. Yamamoto, Chem. Commun. 49, 6861 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Friščic, Chem. Soc. Rev. 41, 3493 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Oh, X. Liu, M. Park, D. Kim, D. Moon, M.S. Lah, Dalton Trans. 40, 5720 (2011)CrossRefGoogle Scholar
  12. 12.
    N. Ahmada, A.H. Chughtaia, H.A. Younusa, F. Verpoorta, Coord. Chem. Rev. 280, 1 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110, 1857 (2010)CrossRefGoogle Scholar
  14. 14.
    D.A. Tomalia, J. Nanopart. Res. 11, 1251 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Fischer, F. Vögtle, Angew. Chem., Int. Ed. 38, 884 (1999)CrossRefGoogle Scholar
  16. 16.
    A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99, 1665 (1999)CrossRefGoogle Scholar
  17. 17.
    G.R. Newkome, C. Shreiner, Chem. Rev. 110, 6338 (2010)CrossRefGoogle Scholar
  18. 18.
    S.M. Grayson, J.M.J. Fréchet, Chem. Rev. 101, 3819 (2001)CrossRefGoogle Scholar
  19. 19.
    H.-F. Chow, C.C. Mak, J. Org. Chem. 62, 5116 (1997)CrossRefGoogle Scholar
  20. 20.
    Q.-S. Hu, V. Pugh, M. Sabat, L. Pu, J. Org. Chem. 64, 7528 (1999)CrossRefGoogle Scholar
  21. 21.
    K. Albrecht, Y. Kasai, K. Yamamoto, J. Inorg. Organomet. Polym. Mater. 19, 118 (2009)CrossRefGoogle Scholar
  22. 22.
    G. Zhou, W. Wong, B. Yao, Z. Xie, L. Wang, Angew. Chem. Int. Ed. 46, 1149 (2007)CrossRefGoogle Scholar
  23. 23.
    D. Xia, B. Wang, B. Chen, S. Wang, B. Zhang, J. Ding, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. Engl. 53, 1048 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Köllner, B. Pugin, A. Togni, J. Am. Chem. Soc. 120, 10274 (1998)CrossRefGoogle Scholar
  25. 25.
    E.C. Wiener, F.P. Auteri, J.W. Chen, M.W. Brechbiel, O.A. Gansow, D.S. Schneider, R.L. Belford, R.B. Clarkson, P.C. Lauterbur, J. Am. Chem. Soc. 118, 7774 (1996)CrossRefGoogle Scholar
  26. 26.
    M.Y. Su, A. Mhler, X. Lao, O. Nalcioglu, Magn. Reson. Med. 39, 259 (1998)CrossRefGoogle Scholar
  27. 27.
    C. Ornelas, J. Ruiz, C. Belin, D. Astruc, J. Am. Chem. Soc. 131, 590 (2009)CrossRefGoogle Scholar
  28. 28.
    M.-S. Choi, T. Aida, H. Luo, Y. Araki, O. Ito, Angew. Chem. Int. Ed. 42, 4060 (2003)CrossRefGoogle Scholar
  29. 29.
    V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res. 31, 26 (1998)CrossRefGoogle Scholar
  30. 30.
    W. Ong, M. Gómez-Kaifer, A. E. Kaifer, Chem. Commun. 1677 (2004)Google Scholar
  31. 31.
    S. Shinoda, J. Incl. Phenom. Macrocycl. Chem. 59, 1 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Shinoda, M. Ohashi, H. Tsukube, Chem. Eur. J. 13, 81 (2007)CrossRefGoogle Scholar
  33. 33.
    F. Zeng, S.C. Zimmerman, Chem. Rev. 97, 1681 (1997)CrossRefGoogle Scholar
  34. 34.
    R. Buschbeck, H. Lang, Organomet. Chem. 62, 696 (2005)CrossRefGoogle Scholar
  35. 35.
    K. Albrecht, Y. Kasai, Y. Kuramoto, K. Yamamoto, Chem. Commun. 49, 865 (2013)CrossRefGoogle Scholar
  36. 36.
    D.A. Tomalia, A.M. Naylor, W. A., Goddard III. Angew. Chem., Int. Ed. Engl. 29, 138 (1990)CrossRefGoogle Scholar
  37. 37.
    R.M. Crooks, M. Zhao, L. Sun, V. Chechik, L.K. Yeung, Acc. Chem. Res. 34, 181 (2001)CrossRefGoogle Scholar
  38. 38.
    R.W.J. Scott, O.M. Wilson, R.M.J. Crooks, Phys. Chem. B 109, 692 (2005)CrossRefGoogle Scholar
  39. 39.
    K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, H. Chiba, Nature 415, 509 (2002)CrossRefGoogle Scholar
  40. 40.
    M. Higuchi, S. Shiki, K. Ariga, K. Yamamoto, J. Am. Chem. Soc. 123, 4414 (2001)CrossRefGoogle Scholar
  41. 41.
    K. Yamamoto, T. Imaoka, W.J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 1, 397 (2009)CrossRefGoogle Scholar
  42. 42.
    N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Nat. Nanotechnol. 3, 106 (2008)CrossRefGoogle Scholar
  43. 43.
    T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, K. Yamamoto, J. Am. Chem. Soc. 135, 13089 (2013)CrossRefGoogle Scholar
  44. 44.
    K. Yamamoto, T. Imaoka, Acc. Chem. Res. 47, 1127 (2014)CrossRefGoogle Scholar
  45. 45.
    T. Imaoka, N. Inoue, K. Yamamoto, Chem. Commun. 48, 7235 (2012)CrossRefGoogle Scholar
  46. 46.
    K. Albrecht, N. Sakane, K. Yamamoto, Chem. Commun. 50, 12177 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Takanashi, H. Chiba, M. Higuchi, K. Yamamoto, Org. Lett. 6, 1709 (2004)CrossRefGoogle Scholar
  48. 48.
    K. Yamamoto, M. Higuchi, A. Kimoto, T. Imaoka, K. Masachika, Bull. Chem. Soc. Jpn. 78, 349 (2005)CrossRefGoogle Scholar
  49. 49.
    K. Takanashi, A. Fujii, R. Nakajima, H. Chiba, M. Higuchi, Y. Einaga, K. Yamamoto, Bull. Chem. Soc. Jpn. 80, 1563 (2007)CrossRefGoogle Scholar
  50. 50.
    M.J. Frisch, et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, 2010Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ken Albrecht
    • 1
  • Noriko Sakane
    • 1
  • Yusuke Inomata
    • 1
  • Kimihisa Yamamoto
    • 1
  1. 1.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations