Synthesis, Crystal Structure of Tetra-Nuclear Macrocyclic Cu(II) Complex Material and Its Application as Catalysts for A3 Coupling Reaction

  • Xi-Shi Tai
  • Li-Li Liu
  • Jie Yin


A novel tetra-nuclear macrocyclic Cu(II) complex has been synthesized by the reaction of cupric acetate monohydrate with N-acetyl-l-phenylalanine and 4,4-bipyridine in water/ethanol (v:v = 1:1) solution, and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the Cu(II) complex belongs to monoclinic, space group P 21 with a = 14.993(3) Å, b = 14.831(3) Å, c = 22.262(4) Å, β = 99.37(3)°, V = 4884.2(16) Å3, Z = 2, D c  = 1.420 μg m−3, μ = 0.942 mm−1, F(000) = 2,160, and final R 1 = 0.0701, ωR 2 = 0.1905. The molecules form three dimensional tubular structures by the interaction of hydrogen bonds and π–π interaction. The A3 coupling reaction of phenylacetylene, aldehyde and amine (piperidine) in the presence of Cu(II) complex as an efficient heterogeneous catalyst has been studied. The catalyst displayed high activity and afforded the corresponding propargylamines with excellent yields. The Cu(II) complex catalyst was reused three times without significant loss of its catalytic activity.


N-Acetyl-l-phenylalanine 4,4-Bipyridine Tetra-nuclear macrocyclic Cu(II) complex Crystal structure Catalytic property 



The authors would like to thank the National Natural Science Foundation of China (No. 21171132), the Project of Shandong Province Higher Educational Science and Technology Program (J14LC01) and Science Foundation of Weifang.

Supplementary material

10904_2014_77_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)


  1. 1.
    X.J. Zhou, B.Y. Li, G.H. Li, Q. Zhou, Z. Li, S.H. Feng, Cryst. Eng. Commun. 14, 4664 (2012)CrossRefGoogle Scholar
  2. 2.
    W.J. Xu, Z.J. Xie, L.Y. Zhang, K.F. Wu, X.H. Yin, Y. Feng, J. Iran. Chem. Soc. (2014). doi: 10.1007/s13738-013-0401-7 Google Scholar
  3. 3.
    G. Demirtas, N. Dege, H. İcbudak, Ö. Yurdakul, O. Büyükgüngör, J. Inorg. Organomet. Polym. 22, 671 (2012)CrossRefGoogle Scholar
  4. 4.
    X.S. Tai, W.H. Zhao, J. Inorg. Organomet. Polym. 23, 1354 (2013)CrossRefGoogle Scholar
  5. 5.
    R.E. Mewis, S.J. Archibald, Coord. Chem. Rev. 254, 1686 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Tai, W. Zhao, Materials 6, 3547 (2013)CrossRefGoogle Scholar
  7. 7.
    Q. Li, Y. Wang, P.F. Yan, G.F. Hou, G.M. Li, Inorg. Chim. Acta. 413, 32 (2014)CrossRefGoogle Scholar
  8. 8.
    W.G. Lu, L. Jiang, X.L. Feng, T.B. Lu, Cryst. Growth Des. 6, 564 (2006)CrossRefGoogle Scholar
  9. 9.
    X.S. Tai, J.H. Jiang, Materials 5, 1626 (2012)CrossRefGoogle Scholar
  10. 10.
    L.F. Wang, Y.X. Hu, W.W. Zhang, X.M. Ren, Chin. J. Inorg. Chem. 27, 542 (2011)Google Scholar
  11. 11.
    G.H. Xu, Y. Ma, K. Wang, X. Wang, E.Q. Gao, J. Mol. Struct. 1040, 25 (2013)CrossRefGoogle Scholar
  12. 12.
    D.J. Price, S.J. Coles, M.B. Hursthouse, J. Struct. Chem. 54, 474 (2013)CrossRefGoogle Scholar
  13. 13.
    X.S. Tai, N. Wei, D.H. Wang, Materials 5, 558 (2012)CrossRefGoogle Scholar
  14. 14.
    V.K.Y. Lo, Y. Liu, M.K. Wong, C.M. Che, Org. Lett. 8, 1592 (2006)Google Scholar
  15. 15.
    G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution (University of GÖttingen, GÖttingen, 1997)Google Scholar
  16. 16.
    G.M. Sheldrick, SHELXTL-97, Program for Crystal Structure Refinement (University of GÖttingen, GÖttingen, 1997)Google Scholar
  17. 17.
    K. Nakamoto, Infrared and Ramen Spectra of Inorganic and Coordination Compounds, 3rd edn. (John Wiley and Sons, New York, 1978)Google Scholar
  18. 18.
    X.J. Wu, Y.P. Chen, Z.M. Xia, S.Z. Ge, F. Chai, Chin. J. Struct. Chem. 32, 1724 (2013)Google Scholar
  19. 19.
    C.M. Wei, Z.G. Li, C.J. Li, Org. Lett. 5, 4473 (2003)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, A. Corma, Angew. Chem. Int. Ed. Engl. 47, 4358 (2008)CrossRefGoogle Scholar
  21. 21.
    S.J. Wang, X.X. He, L.X. Song, Z.Y. Wang, Synlett. 3, 447 (2009)Google Scholar
  22. 22.
    A. Teimouri, A.N. Chermahini, M. Narimani, Bull. Korean Chem. Soc. 33, 1556 (2012)CrossRefGoogle Scholar
  23. 23.
    L.L. Liu, X. Zhang, S.M. Rang, Y. Yang, X.P. Dai, J.S. Gao, C.M. Xu, J. He, RSC Adv. 4, 13093 (2014)CrossRefGoogle Scholar
  24. 24.
    P.H. Li, L. Wang, Tetrahedron 63, 5455 (2007)CrossRefGoogle Scholar
  25. 25.
    K.M. Reddy, N.S. Badu, I. Suryanarayana, P.S.S. Prasad, N. Lingaiah, Tetrahedron Lett. 47, 7563 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Kidwai, V. Bansal, A. Kumar, S. Mozumder, Green Chem. 9, 742 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Wei, C.J. Li, J. Am. Chem. Soc. 125, 9548 (2003)CrossRefGoogle Scholar
  28. 28.
    L. Shi, Y.Q. Tu, M. Wang, F.M. Zhang, C.A. Fan, Org. Lett. 6, 1001 (2004)CrossRefGoogle Scholar
  29. 29.
    L.L. Liu, X. Zhang, J.S. Gao, C.M. Xu, Green Chem. 14, 1710 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Weifang UniversityWeifangPeople’s Republic of China
  2. 2.College of Applied Chemistry and Environmental Engineering, Xinyang Vocational and Technical CollegeXinyangPeople’s Republic of China

Personalised recommendations