Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@Au10 (M = W, Mo, Ru, Co)

  • Delwar Hossain
  • Charles U. PittmanJr.
  • Steven R. GwaltneyEmail author


The structures and stabilities of a series of endohedral gold clusters containing ten gold atoms M@Au10 (M = W, Mo, Ru, Co) have been determined using density functional theory. The gradient-corrected functional BP86, the Tao-Perdew-Staroverov-Scuseria TPSS meta-GGA functional, and the hybrid density functionals B3LYP and PBE1PBE were employed to calculate the structures, binding energies, adiabatic ionization potentials, and adiabatic electron affinities for these clusters. The LanL2DZ effective core potentials and the corresponding valence basis sets were employed. The M@Au10 (M = W, Mo, Ru, Co) clusters have higher binding energies than an empty Au10 cluster. In addition, the large HOMO–LUMO gaps suggest that the M@Au10 (M = W, Mo, Ru, Co) clusters are all likely to be stable chemically. The ionization potentials and electron affinities for these clusters are very high, and the W@Au10 and Mo@Au10 clusters have electron affinities similar to the super-halogen Al13.


Gold nanoclusters DFT Binding energy Electron affinity Ionization potential 



This project was financially supported by Grant Number P20RR017661 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. The authors would like to thank Dr. Svein Saebø for allowing the use of his laboratory space during this work.

Supplementary material

10904_2013_9995_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 54 kb)


  1. 1.
    G.C. Bond, Catal. Today 72, 5 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)CrossRefGoogle Scholar
  3. 3.
    A. Ueda, M. Haruta, Gold Bull. 32, 3 (1999)CrossRefGoogle Scholar
  4. 4.
    G. Mul, A. Zwijnenburg, B. van der Linden, M. Makkee, J.A. Moulijn, J. Catal. 201, 128 (2001)CrossRefGoogle Scholar
  5. 5.
    C.W. Corti, R.J. Holliday, D.T. Thompson, Gold Bull. 35, 111 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Kim, R.C. Johnson, J.T. Hupp, Nano Lett. 1, 165 (2001)CrossRefGoogle Scholar
  7. 7.
    F. Patolsky, Y. Weizmann, O. Lioubashevski, I. Willner, Angew. Chem. Int. Ed. 41, 2323 (2002)CrossRefGoogle Scholar
  8. 8.
    J.F. Hanfeld, F.R. Furuya, J. Histochem. Cytochem. 40, 177 (1992)CrossRefGoogle Scholar
  9. 9.
    Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536 (2002)CrossRefGoogle Scholar
  10. 10.
    T.M. Herne, M.J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997)CrossRefGoogle Scholar
  11. 11.
    H.M. Lee, M. Ge, B.R. Shau, P. Tarakeshwar, K.S. Kim, J. Phys. Chem. B 107, 9994 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Oviedo, R.E. Palmer, J. Chem. Phys. 117, 9548 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)CrossRefGoogle Scholar
  14. 14.
    W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. Theil Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)CrossRefGoogle Scholar
  15. 15.
    S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)CrossRefGoogle Scholar
  16. 16.
    M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Stat. Sol. 242, 819 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Schwerdtfeger, Angew. Chem. Int. Ed. 42, 1892 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000)CrossRefGoogle Scholar
  19. 19.
    P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)CrossRefGoogle Scholar
  20. 20.
    P. Pyykkö, N. Runeberg, Angew. Chem. Int. Ed. 41, 2174 (2002)CrossRefGoogle Scholar
  21. 21.
    X. Li, B. Kiran, J. Li, H.-J. Zhai, L.-S. Wang, Angew. Chem. Int. Ed. 41, 4786 (2002)CrossRefGoogle Scholar
  22. 22.
    J. Autschbach, B.A. Hess, M.P. Johansson, J. Neugebauer, M. Patzschke, P. Pyykkö, M. Reiher, D. Sundholm, Phys. Chem. Chem. Phys. 6, 11 (2004)CrossRefGoogle Scholar
  23. 23.
    H.-J. Zhai, J. Li, L.-S. Wang, J. Chem. Phys. 121, 8369 (2004)CrossRefGoogle Scholar
  24. 24.
    S.-Y. Wang, J.-Z. Yu, H. Mizuseki, Q. Sun, C.-Y. Wang, Y. Kawazoe, Phys. Rev. B 70, 165413 (2004)CrossRefGoogle Scholar
  25. 25.
    Y.-X. Qiu, S.-G. Wang, W.H. Eugen Schwarz, Chem. Phys. Lett. 397, 374 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Long, Y.-X. Qiu, X.-Y. Chen, S.-G. Wang, J. Phys. Chem. C 112, 12646 (2008)CrossRefGoogle Scholar
  27. 27.
    L.-M. Wang, S. Bulusu, H.-J. Zhai, X.-C. Zeng, L.-S. Wang, Angew. Chem. Int. Ed. 46, 2915 (2007)CrossRefGoogle Scholar
  28. 28.
    Y. Gao, S. Bulusu, X.C. Zeng, J. Am. Chem. Soc. 127, 15680 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Walter, H. Häkkinen Phys, Chem. Chem. Phys. 8, 5407 (2006)CrossRefGoogle Scholar
  30. 30.
    M.-X. Chen, X.H. Yan, J. Chem. Phys. 128, 174305 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Zorriasatein, K. Joshi, D.G. Kanhere, J. Chem. Phys. 128, 184314 (2008)CrossRefGoogle Scholar
  32. 32.
    L.-M. Wang, S. Bulusu, W. Huang, R. Pal, L.-S. Wang, X.C. Zeng, J. Am. Chem. Soc. 129, 15136 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Laupp, J. Strähle, Angew. Chem. Int. Ed. 33, 207 (1994)CrossRefGoogle Scholar
  34. 34.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)CrossRefGoogle Scholar
  36. 36.
    J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003)CrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1936E (1997)CrossRefGoogle Scholar
  39. 39.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  40. 40.
    L.E. Roy, P.J. Hay, R.L. Martin, J. Chem. Theory Comput. 4, 1029 (2008)CrossRefGoogle Scholar
  41. 41.
    M.J.T. Frisch, Gaussian 03, Revision C.02 (Gaussian, Inc, Wallingford, 2004)Google Scholar
  42. 42.
    Y. Gao, S. Bulusu, X.C. Zeng, ChemPhysChem 7, 2275 (2006)CrossRefGoogle Scholar
  43. 43.
    J. Li, X. Li, H.-J. Zhai, L.-S. Wang, Science 299, 864 (2003)CrossRefGoogle Scholar
  44. 44.
    C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A 40, 3698 (1989)CrossRefGoogle Scholar
  45. 45.
    U. Berzinsh, M. Gustafsson, D. Hanstorp, A. Klinkmüller, U. Ljungblad, A.-M. Mårtensson-Pendrill, Phys. Rev. A 50, 231 (1995)CrossRefGoogle Scholar
  46. 46.
    X. Li, L.-S. Wang, Phys. Rev. B 65, 153404 (2000)CrossRefGoogle Scholar
  47. 47.
    H.-P. Cheng, R.S. Berry, R.L. Whetten, Phys. Rev. B 43, 10647 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Delwar Hossain
    • 1
  • Charles U. PittmanJr.
    • 2
  • Steven R. Gwaltney
    • 2
    • 3
    Email author
  1. 1.Department of ChemistryAllen UniversityColumbiaUSA
  2. 2.Department of ChemistryMississippi State UniversityMississippi StateUSA
  3. 3.Center for Environmental Health Sciences and HPCC Center for Computational SciencesMississippi State UniversityMississippi StateUSA

Personalised recommendations