Titanate Anodes for Sodium Ion Batteries



For reasons of cost and supply security issues, there is growing interest in the development of rechargeable sodium ion batteries, particularly for large-scale grid storage applications. Like the much better known and technologically important lithium ion analogs, the devices operate by shuttling alkali metal cations between two host materials, which undergo insertion processes at different electrochemical potentials. A particular challenge for the sodium systems is identification of a suitable anode material due to the fact that sodium does not intercalate into graphite. Although several alternatives, including disordered carbons and alloys are being investigated, the most promising options at present lie with titanates, not in the least because of attractive characteristics such as low toxicity, ease of synthesis, wide availability, and low cost. A large variety of sodium titanate compounds can be prepared, many of which have tunnel or layered structures that can readily undergo reversible reductive intercalation reactions. A brief overview of the physical, structural, and electrochemical characteristics of several of the most promising materials for sodium-ion battery applications is given in this paper, and a comparison is made between the sodium and the lithium insertion behaviors. For some of these compounds, insertion of sodium occurs at unusually low potentials, a feature that has important implications for the design of high-energy sodium-ion systems.


Sodium ion battery Anodes Titanates Sodium nonatitanate Lepidocrocite structures 


  1. 1.
  2. 2.
    Research Center for Energy Economics, http://www.ffe.de/en/. Accessed 18 Sept 2013
  3. 3.
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577 (2011)CrossRefGoogle Scholar
  4. 4.
    V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Energy Environ. Sci. 5, 5884 (2012)CrossRefGoogle Scholar
  5. 5.
    M.D. Slater, D. Kim, E. Lee, M.M. Doeff, C.S. Johnson, Adv. Funct. Mater. 23, 947 (2013)CrossRefGoogle Scholar
  6. 6.
    M.M. Doeff, M.Y. Peng, Y. Ma, L.C. De Jonghe, J. Electrochem. Soc. 141, L145 (1994)CrossRefGoogle Scholar
  7. 7.
    J.F. Whitacre, A. Tevar, S. Sharma, Electrochem. Commun. 12, 463 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Kim, D.J. Kim, D.-H. Seo, M.S. Yeom, K. Kang, D.K. Kim, Y. Jung, Chem. Mater. 24, 1205 (2012)CrossRefGoogle Scholar
  9. 9.
    D. Kim, S.-H. Kang, M. Slater, S. Rood, J.T. Vaughey, N. Karan, M. Balasubramanian, C.S. Johnson, Adv. Energy Mater. 1, 333 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon, A.S. Prakash, Chem. Mater. 24, 1846 (2012)CrossRefGoogle Scholar
  11. 11.
    B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, Nat. Mater. 6, 749 (2007)CrossRefGoogle Scholar
  12. 12.
    M.M. Doeff, Y. Ma, S.J. Visco, L.C. De Jonghe, J. Electrochem. Soc. 140, L169 (1993)CrossRefGoogle Scholar
  13. 13.
    D.A. Stevens, J.R. Dahn, J. Electrochem. Soc. 147, 1271 (2000)CrossRefGoogle Scholar
  14. 14.
    S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 21, 3859 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Xia, M.N. Obravac, J.R. Dahn, Electrochem. Sol. State Lett. 14, A130 (2011)CrossRefGoogle Scholar
  16. 16.
    V.L. Chevrier, G. Ceder, J. Electrochem. Soc. 158, A1011 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater. 22, E170 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 192, 588 (2009)CrossRefGoogle Scholar
  19. 19.
    K.C. Kam, M.M. Doeff, Mater. Matters 7, 56 (2012)Google Scholar
  20. 20.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  21. 21.
    H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2, 2560 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Zhao, H.-L. Pan, Y.-S. Hu, H. Li, L.-Q. Chen, Chin. Phys. B 21, 028201 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Nat. Commun. (2013). doi:10.1038/ncomms2878 Google Scholar
  24. 24.
    M. Shirpour, J. Cabana, M. Doeff, Energy Environ. Sci. (2013). doi:10.1039/C3EE41037D Google Scholar
  25. 25.
    T. Sasaki, F. Kooli, M. Iida, Y. Michius, S. Takenouchi, Y. Yajima, F. Izumi, B.C. Chakoumakos, M. Watanabe, Chem. Mater. 10, 4123 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Jain, G. Hautier, C. Moore, S.P. Ong, C. Fischer, T. Mueller, K. Persson, G. Ceder, Comp. Mater. Sci. 50, 2295 (2011)CrossRefGoogle Scholar
  27. 27.
    S. P. Ong, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, D. Bailey, D. Skinner, K. Persson, G. Ceder, The Materials Project, http://materialsproject.org/. Accessed 18 Sept 2013
  28. 28.
    S.P. Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20, 1798 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Jain, G. Hautier, S.P. Ong, C. Moore, C. Fischer, K. Persson, G. Ceder, Phys. Rev. B 84, 045115 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Olazcuaga, J.-M. Reau, M. Devalette, G. Le Flem, P. Hagenmuller, J. Sol. State Chem. 13, 275 (1975)CrossRefGoogle Scholar
  31. 31.
    S. Andersson, A.D. Wadsley, Acta Cryst. 14, 1245 (1961)CrossRefGoogle Scholar
  32. 32.
    S. Andersson, A.D. Wadsley, Acta Cryst. 15, 194 (1962)CrossRefGoogle Scholar
  33. 33.
    M. Dion, Y. Piffard, M. Tournoux, J. Inorg. Nucl. Chem. 40, 917 (1978)CrossRefGoogle Scholar
  34. 34.
    V.B. Nalbandyan, Russ. J. Inorg. Chem. 45, 757 (2000)Google Scholar
  35. 35.
    M. Avdeev, A. Kholkin, Acta Cryst. C 56, e539 (2000)CrossRefGoogle Scholar
  36. 36.
    V.B. Nalbandyan, MYu. Avdeev, V.V. Lukov, Russ. J. Inorg. Chem. 43, 148 (1998)Google Scholar
  37. 37.
    A.D. Wadsley, W.G. Mumme, Acta Cryst. B 24, 392 (1968)CrossRefGoogle Scholar
  38. 38.
    Y. Bando, Acta Cryst. A 38, 211 (1982)CrossRefGoogle Scholar
  39. 39.
    Y. Bando, M. Watanabe, Y. Sekikawa, J. Sol. State Chem. 33, 413 (1980)CrossRefGoogle Scholar
  40. 40.
    A. Rudola, K. Saravanan, S. Devaraj, H. Gong, P. Balaya, Chem. Commun. 49, 7451 (2013)CrossRefGoogle Scholar
  41. 41.
    J.C. Pérez-Flores, A. Kuhner, F. García-Alvarado, J. Power Sources 196, 1378 (2011)CrossRefGoogle Scholar
  42. 42.
    K. Kataoka, J. Awaka, N. Kijima, H. Hayakawa, K.-I. Ohshima, J. Akimoto, Chem. Mater. 23, 2344 (2011)CrossRefGoogle Scholar
  43. 43.
    P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M.R. Palacín, Chem. Mater. 23, 4109 (2011)CrossRefGoogle Scholar
  44. 44.
    G. Ilyushin, Crystallogr. Rep. 51, 715 (2006)CrossRefGoogle Scholar
  45. 45.
    A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, J. Mater. Chem. A 1, 2653 (2013)CrossRefGoogle Scholar
  46. 46.
    K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, J. Akimoto, Solid State Ionics 178, 1725 (2008)CrossRefGoogle Scholar
  47. 47.
    J. Lehto, A. Clearfield, J. Radioanal. Nucl. Chem. Lett. 118, 1 (1987)CrossRefGoogle Scholar
  48. 48.
    A. Clearfield, J. Lehto, J. Sol. State Chem. 73, 98 (1988)CrossRefGoogle Scholar
  49. 49.
    A. Merceille, E. Weinzaepfel, Y. Barré, A. Grandjean, Adsorption 17, 967 (2011)CrossRefGoogle Scholar
  50. 50.
    I. Andrusenko, E. Magnaioli, T.E. Gorelik, D. Koll, M. Panthöfer, W. Tremel, U. Kolb, Acta Cryst. B 67, 218 (2011)CrossRefGoogle Scholar
  51. 51.
    A.F. Reid, W.G. Mumme, A.D. Wadsley, Acta Cryst. B 24, 1228 (1968)CrossRefGoogle Scholar
  52. 52.
    D. Groult, C. Mercey, B. Raveau, J. Solid State Chem. 32, 289 (1973)CrossRefGoogle Scholar
  53. 53.
    R.S. Roth, H.S. Parker, W.S. Brower, Mater. Res. Bull. 8, 327 (1973)CrossRefGoogle Scholar
  54. 54.
    W.A. England, J.E. Birkett, J.P. Goodenough, P.J. Wiseman, J. Solid State Chem. 49, 300 (1983)CrossRefGoogle Scholar
  55. 55.
    Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, J. Phys. Chem. B 105, 10893 (2001)CrossRefGoogle Scholar
  56. 56.
    T. Beuvier, M. Richard-Plouet, L. Brohan, J. Phys. Chem. C 114, 7660 (2010)CrossRefGoogle Scholar
  57. 57.
    T. Sasaki, M. Watanabe, J. Am. Chem. Soc. 120, 4682 (1998)CrossRefGoogle Scholar
  58. 58.
    T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, J. Am. Chem. Soc. 118, 8329 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  1. 1.Environmental Energy Technologies Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations