Direct Synthesis of CdO Nanoparticles from a Novel Nano-Rods Cadmium(II) 4,4-Difluoro-1-phenyl-1,3-butanedionate Nano Coordination Compound

  • Younes Hanifehpour
  • Sanaz Mokhtari Asl
  • Babak Mirtamizdoust
  • Sang Woo Joo


A novel nano-rods cadmium(II) fluorine-substituted β-diketonate, [Cd(2,2′-bpy)(dfpb)2] (1), (2,2′-bpy = 2,2′-bipyridine; dfpb = 4,4-difluoro-1-phenyl-1,3-butandion) has been synthesized by a sonochemical method that produces the coordination compound with nano dimensions. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction (XRD) elemental analysis and IR spectroscopy. Compound 1 was structurally characterized by single crystal X-ray diffraction. The single-crystal structure of this complex shows that the coordination number of the CdII ions is six with two N-donor atoms from the 2,2′-bpy ligand and four O-donors from two dfpb. Self-assembly of the complex occurs through CH···F–C and π–π stacking interactions. The supramolecular features of 1 are controlled by weak directional intermolecular interactions. CdO nanoparticles were obtained by thermolysis of 1 at 180 °C with oleic acid as a surfactant. The average diameter of the nanoparticles was estimated by the Scherrer equation to be 20 nm. The morphology and size of the CdO samples were further observed using SEM.


Cd(II) β-Diketonate Coordination compound Nanostructure 



This work is funded by the World Class University Grant KRF R32-2008-000-20082-0 of the National Research Foundation of Korea.


  1. 1.
    C. Janiak, Dalton Trans. 3(14), 2781 (2003)CrossRefGoogle Scholar
  2. 2.
    G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. 24, 2976 (2003)CrossRefGoogle Scholar
  3. 3.
    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477 (2009)CrossRefGoogle Scholar
  4. 4.
    Q.-R. Fang, G.-S. Zhu, M. Xue, J.-Y. Sun, S.-L. Qiu, Dalton. Trans. (20), 2399 (2006)Google Scholar
  5. 5.
    L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 38, 1248 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Tao, M.L. Tong, J.X. Shi, X.M. Chen, S.W. Ng, Chem. Commun. 2043 (2000)Google Scholar
  7. 7.
    Y.-Z. Tang, X.-F. Huang, Y.-M. Song, P.W.H. Chan, R.-G. Xiong, Inorg. Chem. 45, 4868 (2006)CrossRefGoogle Scholar
  8. 8.
    Q. Ye, Y.-M. Song, G.-X. Wang, K. Chen, D.-W. Fu, P.W.H. Chan, J.-S. Zhu, S.D. Huang, R.-G. Xiong, J. Am. Chem. Soc. 128, 6554 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 45, 174 (2006)CrossRefGoogle Scholar
  10. 10.
    D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Chem. Soc. Rev. 38, 1257 (2009)CrossRefGoogle Scholar
  11. 11.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)Google Scholar
  12. 12.
    Y. Dai, E. Ma, E. Tang, J. Zhang, Z. Li, X. Huang, Y. Yao, Cryst. Growth Des. 5, 1313 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Zhu, H. Zhang, Y. Zhao, M. Shao, Z. Wang, M. Li, J. Mol. Struct. 892, 420 (2008)CrossRefGoogle Scholar
  14. 14.
    J.M.D. Prasanna, T.N. Guru Row, Cryst. Eng. 3, 135 (2000)CrossRefGoogle Scholar
  15. 15.
    A.R. Choudhury, U.K. Urs, T.N. Guru Row, K. Nagarajan, J. Mol. Struct. 605, 71 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, M.A. Novak, Angew. Chem. Int. Ed. 40, 1760 (2001)CrossRefGoogle Scholar
  17. 17.
    X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1 (2003)CrossRefGoogle Scholar
  18. 18.
    A.V. Murugan, R.S. Sonawane, B.B. Kale, S.K. Apte, A.V. Kulkarni, Mater. Chem. Phys. 71, 98 (2001)CrossRefGoogle Scholar
  19. 19.
    C. Li, X. Yang, B. Yang, Y. Yan, Y.T. Qian, J. Cryst. Growth 291, 45 (2006)CrossRefGoogle Scholar
  20. 20.
    G. Shahverdizadeh, A. Morsali, J. Inorg. Organomet. Polym. 21, 694 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Ramazani, A. Morsali, Ultrason. Sonochem. 18, 1160 (2011)CrossRefGoogle Scholar
  22. 22.
    Z. Rashidi Ranjbar, A. Morsali, Polyhedron 30, 929 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Shahverdizadeh, S. Masoudian, A.A. Soudi, F. Bigdeli, A. Morsali, H.R. Khavasi, J. Inorg. Organomet. Polym. 21, 171 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32, 115 (1999)CrossRefGoogle Scholar
  25. 25.
    G.M. Sheldrick, Acta Crystallogr. 64(1), 112 (2007)Google Scholar
  26. 26.
    J. Farrugia, J. Appl. Crystallogr. 30, 565 (1997)CrossRefGoogle Scholar
  27. 27.
    J.M. Harrowfield, H. Miyamae, B.W. Skelton, A.A. Soudi, A.H. White, Aust. J. Chem. 49, 1165 (1996)CrossRefGoogle Scholar
  28. 28.
    L. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn, Part B, (Wiley, New York, 1997), pp. 124–126Google Scholar
  29. 29.
    S. Banerjee, B. Wu, C. Janiak, A. Ghosh, Inorg. Chim. Acta 358, 535 (2005)CrossRefGoogle Scholar
  30. 30.
    F. Marandi, A. Morsali, L.-G. Zhu, J. Coord. Chem. 60, 2107 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Marandi, M. Khosravi, H.-K. Fun, Z. Anorg. Allg. Chem. 634, 2617 (2008)CrossRefGoogle Scholar
  32. 32.
    T. Dorn, C. Janiak, K. Abu-Shandi, CrystEngComm 7, 633 (2005)CrossRefGoogle Scholar
  33. 33.
    D.L. Reger, R.F. Semeniuc, V. Rassolov, M.D. Smith, Inorg. Chem. 43, 537 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Younes Hanifehpour
    • 1
    • 2
  • Sanaz Mokhtari Asl
    • 2
  • Babak Mirtamizdoust
    • 1
    • 2
  • Sang Woo Joo
    • 1
  1. 1.WCU Nano Research Center, School of Mechanical EngineeringYeungnam UniversityGyongsanSouth Korea
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations