Polymer/Trimer/Metal Complex Mixtures as Precursors of Gold Nanoparticles: Tuning the Morphology in the Solid-State

  • Carlos Díaz Valenzuela
  • Gabino A. Carriedo
  • M. Luisa Valenzuela
  • Luis Zúñiga
  • Colm O‘Dwyer


The pyrolysis of several physical mixtures of AuCl(PPh3) with polymeric [NP(O2C12H8)]n or cyclic N3P3(O2C12H8)3 phosphazenes, formed as solid powders or films with different molar ratios, have been studied under air and at 800 °C. The characterization of the products has shown that the particle size and morphology are strongly dependent on the nature of the phosphazene, the phosphazene/AuCl(PPh3) molar ratio and on the preparation methodology. Gold nanoparticles (NPs) with mean sizes as small as 3.5 nm were obtained from a [NP(O2C12H8)]n/AuCl(PPh3) 1:1 film. The particle morphology was also strongly dependent on the experimentally conditions of the pyrolysis. Powdered materials exhibit a 3-D irregular morphology in the mixture [NP(O2C12H8)]n/AuCl(PPh3) 3:1 film, and gold foams in the 1:1 ratio, both from the [NP(O2C12H8)]n/AuCl(PPh3) as well as N3P3(O2C12H8)3/AuCl(PPh3) mixtures. These results show for the first time the possibility of controlling morphology and size of gold particles obtained by solid-state reactions.


Gold nanoparticle Phosphazenes Solid-state 



Financial support from Fondecyt (Project 1085011 and 1095135) and DGICYT (Project CTQ-2010-18330) is gratefully acknowledged.

Supplementary material

10904_2011_9601_MOESM1_ESM.doc (6.8 mb)
Supporting information available: XRD of pyrolytic products from (2c), (3c) and (4c); AFM images of pyrolytic products from (1a) and (1b); XRD and SEM images of pyrolytic products from (2a), (2b); XRD and SEM of (2′c), (3′c) and (4′c); TGA and DSC curves for (2a) and experimental procedure for pyrolysis of AuCl(PPh3) and XRD, SEM image and EDAX analysis of their product. (DOC 7011 kb)


  1. 1.
    M.-Ch. Daniel, D. Astruc, Chem. Rev. 104, 293–346 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103–1170 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Roncoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757–3778 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Schmid, B. Corain, Eur. Inorg. Chem. 17, 3081–3098 (2003)CrossRefGoogle Scholar
  5. 5.
    P.E. Chow, in Gold Nanoparticles: Properties, Characterization and Fabrication, Chap 14 (Nova Science Publishers, New York, 2010), pp. 307–314Google Scholar
  6. 6.
    J. Turkevich, P.C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 55–75 (1951)CrossRefGoogle Scholar
  7. 7.
    M. Brust, M. Walte, D. Berthell, D. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 801–802 (1994)Google Scholar
  8. 8.
    T. Teranishi, S. Hasegawa, T. Shimizu, M. Miyake, Adv. Mater. 13, 1699–1701 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Shimizu, T. Teranishi, S. Hasegawa, M. Miyake, J. Phys. Chem. B. 107, 2719–2724 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Miyake, W. Zheng, F.L. Leibowitz, N.K. Ly, Ch. Zhong, Langmuir 16, 490–497 (2000)CrossRefGoogle Scholar
  11. 11.
    J. Oiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao, Angew. Chem. Int. Ed. 43, 2230–2234 (2004)CrossRefGoogle Scholar
  12. 12.
    H.R. Allcock, Adv. Mater. 6, 106–115 (1994)CrossRefGoogle Scholar
  13. 13.
    M. Gleria, R. De Jaeger, Polyphosphazene: A Word Wide Insight (Nova Science Publishers, New York, 2004)Google Scholar
  14. 14.
    G.A. Carriedo, J. Chil. Chem. Soc. 52, 119–195 (2007)CrossRefGoogle Scholar
  15. 15.
    G.A. Carriedo, L. Fernández-Catuxo, F.J. García Alonso, P. Gómez-Elipe, P.A. González, Macromolecules 29, 5320–5325 (1996)CrossRefGoogle Scholar
  16. 16.
    C. Díaz, M.L. Valenzuela, in Horizons in Polymers Research, Chapter 1, ed. R.K. Bregg (Nova Science Publishers, New York, 2005)Google Scholar
  17. 17.
    C. Díaz, P. Castillo, J. Inorg. Organomet. Polym. 11, 183–192 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Díaz, P. Castillo, G.A. Carriedo, P. Gómez-Elipe, F.J. García Alonso, Macromol. Chem. Phys. 203, 1912–1917 (2002)CrossRefGoogle Scholar
  19. 19.
    C. Díaz, P. Castillo, Polym. Bull. 50, 183–192 (2003)CrossRefGoogle Scholar
  20. 20.
    C. Díaz, M.L. Valenzuela, M. Barbosa, Mater. Res. Bull. 39, 9–19 (2004)CrossRefGoogle Scholar
  21. 21.
    G.A. Carriedo, F.J. Garcia Alonso, P. Gómez-Elipe, C. Díaz, N. Yutronic, J. Chil. Chem. Soc. 48, 25–28 (2003)Google Scholar
  22. 22.
    G.A. Carriedo, F.J. García Alonso, C. Díaz, M.L. Valenzuela, Polyhedron 25, 105–112 (2006)CrossRefGoogle Scholar
  23. 23.
    G.A. Carriedo, F.J. García Alonso, P. Gómez-Elipe, P.A. González, Polyhedron 18, 2853–2856 (1999)CrossRefGoogle Scholar
  24. 24.
    G.A. Carriedo, F.J. García Alonso, P.A. González, C. Díaz, N. Yutronic, Polyhedron 21, 2579–2586 (2002)CrossRefGoogle Scholar
  25. 25.
    G.A. Carriedo, F.J. García Alonso, J.L. García Álvarez, C. Díaz, N. Yutronic, Polyhedron 21, 2587–2592 (2002) (and references therein)CrossRefGoogle Scholar
  26. 26.
    C. Díaz, M.L. Valenzuela, G.A. Carriedo, F.J. García Alonso, A. Presa, Polym. Bull. 57, 913–920 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Jiménez, A. Laguna, M. Benouazzane, J.A. Sanz, C. Díaz, M.L. Valenzuela, P.G. Jones, Chem. Eur. J. 15, 13509–13520 (2009)CrossRefGoogle Scholar
  28. 28.
    Ch. Li, K.L. Shuford, Q.-H. Park, W. Cai, Y. Li, E.J. Lee, S.O. Cho, Angew. Chem. Int. Ed. 46, 3264–3268 (2007)CrossRefGoogle Scholar
  29. 29.
    H.L. Wu, Ch. Kuo, M.H. Huang, Langmuir 26, 12307–12313 (2010)CrossRefGoogle Scholar
  30. 30.
    A.M. Hodge, J.R. Hayes, J.A. Caro, J. Biener, A. Nhamza, Adv. Eng. Mater. 8, 853–857 (2006)CrossRefGoogle Scholar
  31. 31.
    B.C. Tappan, M.H. Huyuh, M.A. Hiskey, D.E. Chavez, E.P. Luther, I.T. Mang, S.F. Son, J. Am. Chem. Soc. 128, 6589–6594 (2006)CrossRefGoogle Scholar
  32. 32.
    I. Banhart, Adv. Eng. Mater. 8, 781–794 (2006)CrossRefGoogle Scholar
  33. 33.
    H. Ehang, A.I. Cooper, J. Mater. Chem. 15, 2157–2159 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Biener, G.W. Nyce, A.M. Hodge, M.M. Biener, A.V. Hamza, S.A. Maier, Adv. Mater. 20, 1211–1217 (2008)CrossRefGoogle Scholar
  35. 35.
    Y. Ding, J. Enlabacher, J. Am. Chem. Soc. 125, 7772–7773 (2003)CrossRefGoogle Scholar
  36. 36.
    F. Khan, S. Mann, J. Phys. Chem. C 113, 19871–19874 (2009)CrossRefGoogle Scholar
  37. 37.
    J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, Ch.A. Mirkin, Small 5, 646–664 (2005)CrossRefGoogle Scholar
  38. 38.
    L. Malfatti, D. Morongiu, S. Costacurta, P. Falcaro, H. Amenitsch, B. Marmiro, J. Li, G. Crenci, M.F. Casula, P. Innocenzi, Chem. Mater. 22, 2132–2137 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Polte, T.T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A.F. Thunemann, R. Kraehnert, J. Am. Chem. Soc. 132, 1296–1301 (2010)CrossRefGoogle Scholar
  40. 40.
    X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, J. Am. Chem. Soc. 129, 13939–13948 (2007)CrossRefGoogle Scholar
  41. 41.
    B.K. Pong, H.I. Elim, J.X. Chong, W. Ji, B.L. Trout, J.Y. Lee, J. Phys. Chem. C 111, 6281–6287 (2007)CrossRefGoogle Scholar
  42. 42.
    A. Laguna, in Modern Supramolecular Gold Chemistry, Chapter 5 (Wiley WCH, Wenheim, 2008), p. 318Google Scholar
  43. 43.
    R.A. Rawashdeh-Omary, M.A. Omary, J.P. Fackler, R. Galassi, B.R. Pietroni, A. Burini, J. Am. Chem. Soc. 123, 9689–9691 (2001)CrossRefGoogle Scholar
  44. 44.
    A.A. Mohamed, R.A. Rawashdeh-Omary, M.A. Omary, J.P. Fackler, Dalton Trans. 2597–2602 (2005)Google Scholar
  45. 45.
    P. Perez-Galan, N. Delpont, H. Guerrero-Gomez, F. Maseras, A.M. Echavarren, Chem. Eur. J. 16, 5324–5332 (2010)CrossRefGoogle Scholar
  46. 46.
    M.J. Hostetler, J.E. Wingate, Ch.J. Zhong, J.E. Harris, E.W. Vachet, M.R. Clark, J.D. Londono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans, R.W. Murray, Langmuir 14, 17–30 (1998)CrossRefGoogle Scholar
  47. 47.
    P.D. Jadzinky, G. Calero, Ch.J. Ackerson, D.A. Bushnell, Ch.J. Kornberg, Science 318, 430–433 (2007)CrossRefGoogle Scholar
  48. 48.
    G.B. Khomutov, V.V. Kislov, M.N. Antipirina, R.V. Gainutdinov, S.P. Gubin, A. Yy Obydenov, S.A. Pavlov, A.A. Rakhnyanskaya, A.N. Sergeev-Cherenkov, E.S. Soldatov, D.B. Suyatin, A.L. Toltikhina, A.S. Trifonov, T.V. Yurova, Microelectron. Eng. 69, 373–383 (2003)CrossRefGoogle Scholar
  49. 49.
    G. Walters, I.P. Parkin, Chem. Mater. 19, 574–590 (2009)CrossRefGoogle Scholar
  50. 50.
    E.C. Walker, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Microelectron. Eng. 61, 555–561 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos Díaz Valenzuela
    • 1
  • Gabino A. Carriedo
    • 2
  • M. Luisa Valenzuela
    • 3
  • Luis Zúñiga
    • 1
  • Colm O‘Dwyer
    • 4
  1. 1.Departamento de Química, Facultad de QuímicaUniversidad de ChileSantiago de ChileChile
  2. 2.Departamento de Química Orgánica e Inorgánica, Facultad de QuímicaUniversidad de OviedoOviedoSpain
  3. 3.Departamento de Ciencias Química, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile
  4. 4.Department of Physics & Energy, and Materials & Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations