Structural Refinement and Photoluminescence Properties of MnWO4 Nanorods Obtained by Microwave-Hydrothermal Synthesis

  • M. A. P. Almeida
  • L. S. Cavalcante
  • M. Siu Li
  • J. A. Varela
  • E. Longo


Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 °C for 6–96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm−1. TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV–vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.


MnWO4 Microwave-hydrothermal Rietveld refinement Photoluminescence 



The authors acknowledge the financial support of the Brazilian research financing institutions: FAPESP (No. 2009/53189-8/50303-4), CNPq and CAPES. Special thanks are extended to Prof. Dr. D. Keyson and Dr. D.P. Volanti for the development of microwave-hydrothermal system.

Supplementary material

10904_2011_9548_MOESM1_ESM.doc (249 kb)
Supplementary material 1 (DOC 249 kb)


  1. 1.
    R.L. Romer, V. Luders, Geochim. Cosmochim. Acta. 70, 4725 (2006)CrossRefGoogle Scholar
  2. 2.
    C.J. Menéndez, V.L. Barone, I.L. Botto, E.L. Tavani, Miner. Eng. 20, 1278 (2007)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    W.B. Hu, X.L. Nie, Y.Z. Mi, Mater. Charact. 61, 85 (2007)CrossRefGoogle Scholar
  5. 5.
    Y.X. Zhou, Q. Zhang, J.Y. Gong, S.H. Yu, J. Phys. Chem. C. 112, 13383 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Tolédano, B. Mettout, W. Schranz, G. Krexner, J. Phys. Condens. Matter. 22, 065901 (2010)CrossRefGoogle Scholar
  7. 7.
    O. Heyer, N. Hollmann, I. Klassen, S. Jodlauk, L. Bohaty, P. Becker, J.A. Mydosh, T. Lorenz, D. Khomskii, J. Phys. Condens. Matter. 18, L471 (2006)CrossRefGoogle Scholar
  8. 8.
    H.Y. He, J.F. Huang, L.Y. Cao, J.P. Wu, Desalination 252, 66 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Surana, I. Yadav, J.C. Sharma, S. Bhardwaj, Rasayan J. Chem. 1, 125 (2008)Google Scholar
  10. 10.
    Y. Xing, S. Song, J. Feng, Y. Lei, M. Li, H. Zhang, Solid State Sci. 10, 1299 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Thongtem, S. Wannapop, T. Thongtem, Trans. Met. Nonferr. Soc. China 19, s100 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Thongtem, S. Wannapop, A. Phuruangrat, T. Thongtem, Mater. Lett. 63, 833 (2009)CrossRefGoogle Scholar
  13. 13.
    W.S. Choi, K. Taniguchi, S.J. Moon, S.S.A. Seo, T. Arima, H. Hoang, I.S. Yang, T.W. Noh, Y.S. Lee, Phys. Rev. B. 81, 205111 (2010)CrossRefGoogle Scholar
  14. 14.
    V.P. Sakhnenko, N.V. Ter-Oganessian, J. Phys. Condens. Matter. 22, 226002 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Macavei, H. Schulz, Zeit. Fur. Kristallograp. 207, 193 (1993)CrossRefGoogle Scholar
  16. 16.
    H.M. Rietveld, Acta. Crystallogr. 22, 151 (1967)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    L. Lutterotti, S. Matthies, H.R. Wenk, A.J. Schultz, J.J. Richardson, J. Appl. Phys. 81, 594 (1997)CrossRefGoogle Scholar
  19. 19.
    M.N. Iliev, M.M. Gospodinov, A.P. Litvinchuk, Phys. Rev. B. 80, 212302 (2009)CrossRefGoogle Scholar
  20. 20.
    K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. 11, 882 (1999)CrossRefGoogle Scholar
  21. 21.
    L.S. Cavalcante, J.C. Sczancoski, L.F. Lima Jr, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Cryst. Growth Des. 9, 1002 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Opt. Mater. 15, 205 (2000)CrossRefGoogle Scholar
  25. 25.
    L.H. Hoang, N.T.M. Hien, W.S. Choi, Y.S. Lee, K. Taniguchi, T. Arima, S. Yoon, X.B. Chen, I.S. Yang, J. Raman Spectrosc. 41, 1005 (2010)CrossRefGoogle Scholar
  26. 26.
    W. Tong, L. Li, W. Hu, T. Yan, X.F. Guan, G. Li, J. Phys. Chem. C. 114, 15298 (2010)CrossRefGoogle Scholar
  27. 27.
    K.P.F. Siqueira, A. Dias, J. Nanopart. Res. (2011). doi: 10.1007/s11051-011-0248-8
  28. 28.
    L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, J.A. Varela, E. Longo, M.O. Orlandi, Particuology. 7, 353 (2009)CrossRefGoogle Scholar
  29. 29.
    Q. Zhang, X. Chen, Y. Zhou, G. Zhang, S.H. Yu, J. Phys. Chem. C. 111, 3927 (2007)CrossRefGoogle Scholar
  30. 30.
    V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, A.F.P. Alcântara, M.O. Orlandi, E. Moraes, E. Longo, J.A. Varela, M. Siu Li, M.R.M.C. Santos, Cryst. Growth Des. 10, 4752 (2010)CrossRefGoogle Scholar
  31. 31.
    V.M. Longo, E. Orhan, L.S. Cavalcante, S.L. Porto, J.W.M. Espinosa, J.A. Varela, E. Longo, Chem. Phys. 334, 180 (2007)CrossRefGoogle Scholar
  32. 32.
    V.M. Longo, A.T. de Figueiredo, A.B. Campos, J.W.M. Espinosa, A.C. Hernandes, C.A. Taft, J.R. Sambrano, J.A. Varela, E. Longo, J. Phys. Chem. A. 112, 8920 (2008)CrossRefGoogle Scholar
  33. 33.
    T.D. Nguyen, D. Mrabet, T.T.D. Vu, C.T. Dinh, T.O. Do, Cryst. Eng. Commun. 13, 1450 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. A. P. Almeida
    • 1
  • L. S. Cavalcante
    • 2
  • M. Siu Li
    • 3
  • J. A. Varela
    • 2
  • E. Longo
    • 1
    • 2
  1. 1.LIEC-DQ-Universidade Federal de São CarlosSão CarlosBrazil
  2. 2.LIEC-IQ-Universidade Estadual PaulistaAraraquaraBrazil
  3. 3.IFSC, Universidade de São PauloSão CarlosBrazil

Personalised recommendations