Synthesis, Characterization and Ceramic Conversion Studies of Borosiloxane Oligomers from Phenyltrialkoxysilanes

  • Deepa Devapal
  • S. Packirisamy
  • K. J. Sreejith
  • P. V. Ravindran
  • Benny K. George
Article

Abstract

Borosiloxane oligomers, which give ceramic residue in the range of 64–75% (at 900 °C in inert atmosphere), were synthesized through the condensation of boric acid with phenyltrimethoxysilane (PTMOS) and phenyltriethoxysilane in diglyme both in the presence and absence of hydrochloric acid as catalyst. The effect of concentration of the reactants and reaction time on the processability, yield and thermal stability of the product obtained was studied. The oligomers obtained are soluble in common organic solvents and were characterized by FT-IR and NMR spectroscopy, GPC and TGA. The ceramic conversion of one of the oligomers was carried out by heat treatment at 900, 1,500 and 1,650 °C in inert atmosphere. XRD studies reveal that the ceramic formed at 1,500 °C is amorphous and undergoes crystallization to β-SiC when heat treated at 1,650 °C.

Keywords

Borosiloxane oligomers Precursors for ceramics Silicon–boron-oxycarbide Silicon carbide 29Si-NMR spectra 

Notes

Acknowledgements

The authors thank the authorities of VSSC for granting permission to publish this work. One of the authors (K. J. Sreejith) is thankful to Indian Space Research Organization (ISRO) for the research fellowship. Help received from the members of the Analytical and Spectroscopy Division for the thermal, chemical and spectral analyses and Materials Characterization Division for the XRD analysis of the samples is gratefully acknowledged.

References

  1. 1.
    J.I. Jones, in Developments in Inorganic Polymer Chemistry, ed. by M.F. Lappert, G.J. Leigh (Elsevier Publishing Company, Amsterdam, 1962)Google Scholar
  2. 2.
    S. Yajima, K. Okamura, J. Hayashi, T. Shishido, US Patent 4,152,509, 1979Google Scholar
  3. 3.
    Q. Wang, L. Fu, X. Hu, Z. Zhang, Z. Xie, J. Appl. Polym. Sci. 99, 719 (2006)CrossRefGoogle Scholar
  4. 4.
    F. Touati, F. Sediri, N. Gharbi, Mater. Sci. Eng. C 29, 1239 (2000)CrossRefGoogle Scholar
  5. 5.
    K. Hiroshi, Jpn. Patent 54,088,247, 1979Google Scholar
  6. 6.
    S. Yajima, Ceram. Bull. 62, 893 (1983)Google Scholar
  7. 7.
    K. Tomida, N. Miyashita, H. Hashimoto, Showa Electr. Wire Cable Ltd. Rev. 39, 321 (1989)Google Scholar
  8. 8.
    Y. Kiuchi, N. Sukegawa, Showa Electr. Wire Cable Ltd. Rev. 41, 79 (1991)Google Scholar
  9. 9.
    S. Yajima, J. Hayashi, K. Okamura, Nature 266, 521 (1977)CrossRefGoogle Scholar
  10. 10.
    S. Yajima, T. Shishido, M. Hamano, Nature 266, 522 (1977)CrossRefGoogle Scholar
  11. 11.
    S. Hoshii, A. Kojima, J. Mater. Res. 11, 2536 (1996)CrossRefGoogle Scholar
  12. 12.
    R.L. Siqueira, I.V.P. Yoshida, L.C. Pardini, M.A. Schiavon, Mater. Res. 10, 147 (2007)Google Scholar
  13. 13.
    S. Hoshii, A. Kojima, H. Endou, S. Otani, T. Satou, Y. Nakaido, Y. Hasegawa, Tanso 156, 29 (1993)Google Scholar
  14. 14.
    S. Hoshii, A. Kojima, M. Shimoda, S. Otani, T. Satou, Y. Nakaido, Y. Hasegawa, Tanso 161, 23 (1994)Google Scholar
  15. 15.
    G. Ambadas, S. Packirisamy, K.N. Ninan, J. Mater. Sci. Lett. 21, 1003 (2002)CrossRefGoogle Scholar
  16. 16.
    F.D. Snell, C.L. Hilton (eds.), in Encyclopedia of Industrial Chemical Analysis, vol. 7 (Interscience Publishers, New York, 1968), p. 324Google Scholar
  17. 17.
    A. Kasgoz, T. Misono, Y. Abe, J. Polym. Sci. A 32, 1049 (1994)CrossRefGoogle Scholar
  18. 18.
    N.B. Clothup, S.E. Wiberly, L.H. Daly (eds.), in Introduction to IR, Raman Spectroscopy (Academic Press, New York, 1975)Google Scholar
  19. 19.
    G.D. Soraru, N. Dallabona, C. Gervais, F. Babonneau, Chem. Mater. 11, 910 (1999)CrossRefGoogle Scholar
  20. 20.
    G.D. Soraru, F. Babonneau, C. Gervais, N. Dallabona, J. Sol-Gel Sci. Tech. 18, 11 (2000)CrossRefGoogle Scholar
  21. 21.
    Y. Iyoku, M. Kakimoto, Y. Imai, in Advanced Materials, III/B: Composites, Grain Boundaries and Nanophase Materials, vol. 16B, ed. by M. Sakai (Elsevier, Amsterdam, 1993)Google Scholar
  22. 22.
    K.H. Yang, A.J. Woo, Bull. Korean Chem. Soc. 17, 696 (1996)Google Scholar
  23. 23.
    M. Kuniyoshi, M. Takahashi, Y. Tokuda, T. Yoko, J. Non-Cryst. Solids 353, 4162 (2007)CrossRefGoogle Scholar
  24. 24.
    L. Malier, F. Devruex, F. Chaput, J.P. Boilot, in Chemical Processing of Advanced Materials, Chap. 6, ed. by L.L. Hench, J.K. West (Wiley, New York, 1992)Google Scholar
  25. 25.
    A. Arkhireeva, J.N. Hay, M. Manzano, Chem. Mater. 17, 875 (2005)CrossRefGoogle Scholar
  26. 26.
    G. Ramis, P. Quintard, M. Cauchetier, G. Busca, V. Lorenzelli, J. Am. Ceram. Soc. 72, 1692 (1989)CrossRefGoogle Scholar
  27. 27.
    M.A. Schiavon, C. Gervais, F. Babonneau, G.D. Soraru, J. Am. Ceram. Soc. 87, 203 (2004)CrossRefGoogle Scholar
  28. 28.
    Y. Shin, C. Wang, G.J. Exarhos, Adv. Mater. 17, 73 (2005)CrossRefGoogle Scholar
  29. 29.
    R. West, J. Organomet. Chem. 300, 327 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Deepa Devapal
    • 1
  • S. Packirisamy
    • 1
  • K. J. Sreejith
    • 1
  • P. V. Ravindran
    • 2
  • Benny K. George
    • 2
  1. 1.Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM EntityVikram Sarabhai Space CentreThiruvananthapuramIndia
  2. 2.Analytical and Spectroscopy Division, Propellants and Special Chemicals Group, PCM EntityVikram Sarabhai Space CentreThiruvananthapuramIndia

Personalised recommendations