Synthesis, Characterization and Photovoltaic Behavior of a Very Narrow-Bandgap Metallopolyyne of Platinum: Solar Cells with Photocurrent Extended to Near-Infrared Wavelength

  • Xing-Zhu Wang
  • Cheuk-Lam Ho
  • Lei Yan
  • Xi Chen
  • Xun Chen
  • Kai-Yin Cheung
  • Wai-Yeung WongEmail author


The synthesis, characterization and photophysics of a solution-processable metallopolyyne of platinum (P1) functionalized with the dioctyloxyphenyl-substituted thienopyrazine–thiophene hybrid spacer and its model molecular complex (M1) are described. Such metallopolymer P1 possesses a very low bandgap of 1.50 eV which extends towards the near-infrared (NIR) range of the solar spectrum, and represents one of the lowest optical bandgaps reported for metallopolyynes. With the capability of spanning a wider solar-radiation range, P1 can be used to fabricate efficient solar cells with power conversion efficiencies (PCEs) of up to 0.46% under air mass (AM1.5) simulated solar illumination. The electronic effect of the central heterocyclic ring sandwiched between the two thiophene units on the optical properties of these metallopolyynes has been investigated. The present study provides a good approach towards achieving conjugated polymeric materials with a broad solar absorption and demonstrates the potential of low-bandgap metallopolyynes for simultaneous visible and NIR light power generation.


Low-bandgap Metallopolyyne Solar cells Thienopyrazine Thiophene 



W.-Y.W. thanks a grant from the Areas of Excellence Scheme from the University Grants Committee of HKSAR, China (Project No. [AoE/P-03/08]) and a Faculty Research Grant from the Hong Kong Baptist University (FRG2/09-10/091). This research was also financially supported by the National Nature Science Foundation of China (50803051, 20974091) and the Scientific Research Fund of Hunan Provincial Education Department (06C827). We also thank Dr. A. B. Djurišić for the access of facilities for the solar cell fabrication and measurements.


  1. 1.
    H. Meng, D. Tucker, S. Chaffins, Y. Chen, R. Helgeson, B. Dunn, F. Wudl, Adv. Mater. 15, 146 (2003)CrossRefGoogle Scholar
  2. 2.
    M.M. Wienk, M.G.R. Turbiez, M.P. Struijk, M. Fonrodona, R.A.J. Janssen, Appl. Phys. Lett. 88, 153511 (2006)CrossRefGoogle Scholar
  3. 3.
    J.A. Turner, Science 285, 687 (1999)CrossRefGoogle Scholar
  4. 4.
    S.E. Shaheen, D.S. Ginley, G.E. Jabbour, MRS Bull. 30, 10 (2005)Google Scholar
  5. 5.
    K.W.J. Barnham, M. Mazze, B. Clive, Nature 5, 161 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285, 692 (1999)CrossRefGoogle Scholar
  7. 7.
    J.C. Johnson, Chem. Eng. News 82, 25 (2004)Google Scholar
  8. 8.
    N. Robertson, Angew. Chem. Int. Ed. 45, 2338 (2006)CrossRefGoogle Scholar
  9. 9.
    D.O. Reagan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  10. 10.
    M. Grätzel, Inorg. Chem. 44, 6841 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)CrossRefGoogle Scholar
  12. 12.
    K.M. Coakley, M.D. McGehee, Chem. Mater. 16, 4533 (2004)CrossRefGoogle Scholar
  13. 13.
    B.C. Thompson, J.M.J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008)CrossRefGoogle Scholar
  14. 14.
    Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 109, 5868 (2009)CrossRefGoogle Scholar
  15. 15.
    C.J. Brabec, N.S. Sariciftci, J.C. Hummelem, Adv. Funct. Mater. 11, 15 (2001)CrossRefGoogle Scholar
  16. 16.
    C.J. Brabec, C. Winder, N.S. Sariciftci, J.C. Hummelen, A. Van Hal, P.A. Dhanabalan, R.A.J. Janssen, Adv. Funct. Mater. 12, 709 (2002)CrossRefGoogle Scholar
  17. 17.
    C. Winder, N.S. Sariciftci, J. Mater. Chem. 14, 1077 (2004)CrossRefGoogle Scholar
  18. 18.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Roncali, Chem. Rev. 97, 173 (1997)CrossRefGoogle Scholar
  20. 20.
    Y. Ie, M. Nitani, M. Ishikawa, K.-I. Nakayama, H. Tada, T. Kaneda, Y. Aso, Org. Lett. 9, 2115 (2007)CrossRefGoogle Scholar
  21. 21.
    B. Pal, W.-C. Yen, J.-S. Yang, C.-Y. Chao, Y.-C. Hung, S.-T. Lin, C.-H. Chuang, C.-W. Chen, W.-F. Su, Macromolecules 41, 6664 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, W. Yang, Y. Cao, Macromol. Chem. Phys. 207, 511 (2006)CrossRefGoogle Scholar
  23. 23.
    F. Zhang, W. Mammo, L.M. Andersson, S. Admassie, M.R. Andersson, O. Inganäs, Adv. Mater. 18, 2169 (2006)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, E. Perzon, X. Wang, W. Mammo, M.R. Andersson, O. Inganás, Adv. Funct. Mater. 15, 745 (2005)CrossRefGoogle Scholar
  25. 25.
    R.S. Ashraf, M. Shahid, E. Klemm, M. Al-Ibrahim, S. Sensfuss, Macromol. Rapid Commun. 27, 1454 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Younus, A. Köhler, S. Cron, N. Chawdhury, M.R.A. Al-Mandhary, M.S. Khan, J. Lewis, N.J. Long, R.H. Friend, P.R. Raithby, Angew. Chem. Int. Ed. 37, 3036 (1998)CrossRefGoogle Scholar
  27. 27.
    P.D. Harvey, D. Fortin, Coord. Chem. Rev. 171, 351 (1998)Google Scholar
  28. 28.
    W.-K. Chan, C.S. Hui, K.Y.K. Man, K.W. Cheng, H.L. Wong, N. Zhu, A.B. Djurišić, Coord. Chem. Rev. 249, 1351 (2005)CrossRefGoogle Scholar
  29. 29.
    C.W. Tse, K.Y.K. Man, K.W. Cheng, C.S.K. Mak, W.K. Chan, C.T. Yip, Z.T. Liu, A.B. Djurišić, Chem. Eur. J. 13, 328 (2007)CrossRefGoogle Scholar
  30. 30.
    G.R. Whittell, I. Manners, Adv. Mater. 19, 3439 (2007)CrossRefGoogle Scholar
  31. 31.
    W.-Y. Wong, Macromol. Chem. Phys. 209, 14 (2008)CrossRefGoogle Scholar
  32. 32.
    F. Guo, Y.G. Kim, J.R. Reynolds, K.S. Schanze, Chem. Commun. 1887 (2006)Google Scholar
  33. 33.
    N. Chawdhury, A. Köhler, R.H. Friend, W.Y. Wong, J. Lewis, M. Younus, P.R. Raithby, T.C. Corcoran, M.R.A. Al-Mandhary, M.S. Khan, J. Chem. Phys. 110, 4963 (1999)CrossRefGoogle Scholar
  34. 34.
    W.-Y. Wong, X.-Z. Wang, Z. He, A.B. Djurišić, C.-T. Yip, K.-Y. Cheung, H. Wang, C.S.-K. Mak, W.-K. Chan, Nat. Mater. 6, 521 (2007)CrossRefGoogle Scholar
  35. 35.
    W.-Y. Wong, X.-Z. Wang, Z. He, K.-K. Chan, A.B. Djurišić, K.-Y. Cheung, C.-T. Yip, A.M.-C. Ng, Y.-Y. Xi, C.S.-K. Mak, W.-K. Chan, J. Am. Chem. Soc. 129, 14372 (2007)CrossRefGoogle Scholar
  36. 36.
    L. Liu, C.-L. Ho, W.-Y. Wong, K.-Y. Cheung, M.-K. Fung, W.-T. Lam, A.B. Djurišić, W.-K. Chan, Adv. Funct. Mater. 18, 2824 (2008)CrossRefGoogle Scholar
  37. 37.
    W.-Y. Wong, X.-Z. Wang, H.-L. Zhang, K.-Y. Cheung, M.-K. Fung, A.B. Djurišić, W.-K. Chan, J. Organomet. Chem. 693, 3603 (2008)CrossRefGoogle Scholar
  38. 38.
    W.-Y. Wong, J. Organomet. Chem. 694, 2644 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Chatt, B.L. Shaw, J. Chem. Soc. 4020 (1960)Google Scholar
  40. 40.
    J. Chatt, R.G. Hayter, J. Chem. Soc., Dalton Trans. 896 (1961)Google Scholar
  41. 41.
    J. Hou, Z. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc. 128, 4911 (2006)CrossRefGoogle Scholar
  42. 42.
    C.G. Van de Walle, J. Neugebauer, Nature 423, 626 (2003)CrossRefGoogle Scholar
  43. 43.
    C. Kitamura, S. Tanaka, Y. Yamashita, Chem. Mater. 8, 570 (1996)CrossRefGoogle Scholar
  44. 44.
    S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 627 (1980)Google Scholar
  45. 45.
    Y. Fujikura, K. Sonogashira, N. Hagihara, Chem. Lett. 1067 (1975)Google Scholar
  46. 46.
    K. Sonogashira, S. Takahashi, N. Hagihara, Macromolecules 10, 879 (1977)CrossRefGoogle Scholar
  47. 47.
    M.S. Khan, M.K. Al-Suti, M.R.A. Al-Mandhary, B. Ahrens, J.K. Bjernemose, M.F. Mahon, L. Male, P.R. Raithby, R.H. Friend, A. Köhler, J.S. Wilson, Dalton Trans. 65 (2003)Google Scholar
  48. 48.
    W.-Y. Wong, G.-L. Lu, K.-H. Choi, J.-X. Shi, Macromolecules 25, 3506 (2002)CrossRefGoogle Scholar
  49. 49.
    L. Liu, W.-Y. Wong, S.-Y. Poon, J.-X. Shi, K.-W. Cheah, Z. Lin, Chem. Mater. 18, 1369 (2006)CrossRefGoogle Scholar
  50. 50.
    W.-Y. Wong, K.-H. Choi, G.-L. Lu, J.-X. Shi, Macromol. Rapid Commun. 22, 461 (2001)CrossRefGoogle Scholar
  51. 51.
    N.J. Long, C.K. Williams, Angew. Chem. Int. Ed. 42, 2586 (2003)CrossRefGoogle Scholar
  52. 52.
    W.-Y. Wong, C.-L. Ho, Coord. Chem. Rev. 250, 2627 (2006)CrossRefGoogle Scholar
  53. 53.
    W.-Y. Wong, J. Inorg. Organomet. Polym. Mater. 15, 197 (2005)CrossRefGoogle Scholar
  54. 54.
    W.-Y. Wong, Dalton Trans. 4495 (2007)Google Scholar
  55. 55.
    A.S. Abd-El-Aziz, I. Manners (eds.), Frontiers in Transition Metal-Containing Polymers (Wiley-Interscience, New Jersey, 2007)Google Scholar
  56. 56.
    W.-Y. Wong, P.D. Harvey, Macromol. Rapid Commun. 31, 671 (2010)CrossRefGoogle Scholar
  57. 57.
    E.E. Havinga, W. ten Hoeve, H. Wynberg, Synth. Met. 55–57, 299 (1993)CrossRefGoogle Scholar
  58. 58.
    J.L. Bredas, A.J. Heeger, F. Wudl, J. Chem. Phys. 85, 4673 (1986)CrossRefGoogle Scholar
  59. 59.
    J.L. Bredas, Synth. Met. 17, 115 (1987)CrossRefGoogle Scholar
  60. 60.
    X. Wang, E. Perzon, F. Oswald, F. Langa, S. Admassie, M.R. Andersson, O. Inganäs, Adv. Funct. Mater. 15, 1665 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xing-Zhu Wang
    • 1
    • 2
  • Cheuk-Lam Ho
    • 1
  • Lei Yan
    • 2
  • Xi Chen
    • 2
  • Xun Chen
    • 2
  • Kai-Yin Cheung
    • 1
  • Wai-Yeung Wong
    • 1
    Email author
  1. 1.Institute of Molecular Functional Materials and Department of Chemistry and Centre for Advanced Luminescence MaterialsHong Kong Baptist UniversityHong KongPeople’s Republic of China
  2. 2.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations