31P MAS NMR Spectroscopy of Hexachlorocyclotriphosphazene at Different Stages During Thermal Ring-Opening Polymerization

  • Alexey S. Borisov
  • Paul Hazendonk
  • Paul G. Hayes
Communication

Abstract

Thermal ring-opening polymerization of hexachlorocyclotriphosphazene was probed using 31P magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The spectrum of unreacted hexachlorocyclotriphosphazene was compared with the spectra of a reaction mixture at 3, 8 and 17.5 h of polymerization. Signals from trimer, oligomer, polymer and hydrolysis products were identified in the spectra and used to observe changes in the mixture during polymerization. The signal of poly(dichlorophosphazene) exhibits a complex behavior where ten individual components were observed and analyzed by deconvolution. These lines were preliminarily assigned to species with differing chain lengths based on their chemical shifts and relative intensities. This work shows that 31P MAS NMR has the potential to provide quantitative information about the rates of chain propagation and cross-linking during thermal ring-opening polymerization.

Keywords

MAS NMR Solid-state nuclear magnetic resonance Ring-opening polymerization Hexachlorocyclotriphosphazene Poly(dichlorophosphazene) 

Supplementary material

10904_2009_9316_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 kb)

References

  1. 1.
    H.R. Allcock, Science 193, 1214–1219 (1976)CrossRefGoogle Scholar
  2. 2.
    H.R. Allcock, R.L. Kugel, J. Am. Chem. Soc. 87, 4216 (1965)CrossRefGoogle Scholar
  3. 3.
    H.R. Allcock, J. Inorg. Organomet. Polym. Mater. 16, 277–294 (2006)CrossRefGoogle Scholar
  4. 4.
    M.W. Pitcher, Y. Arslan, P. Edinc, M. Hartal, M. Masjedi, O. Metin, F. Sen, O. Turkarslan, B. Yigitsoy, Phosphorus Sulfur Silicon Relat. Elem. 182, 2861–2880 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Dhalluin, R. Dejaeger, J.P. Chambrette, P. Potin, Macromolecules 25, 1254–1258 (1992)CrossRefGoogle Scholar
  6. 6.
    G. Dhalluin, R. Dejaeger, P. Potin, Bull. Soc. Chim. Belg. 98, 653–665 (1989)Google Scholar
  7. 7.
    C.H. Honeyman, I. Manners, C.T. Morrissey, H.R. Allcock, J. Am. Chem. Soc. 117, 7035–7036 (1995)CrossRefGoogle Scholar
  8. 8.
    H.R. Allcock, R.L. Kugel, K.J. Valan, Inorg. Chem. 5, 1709 (1966)CrossRefGoogle Scholar
  9. 9.
    H.W. Spiess, J. Polym. Sci. Polym. Chem. 42, 5031–5044 (2004)CrossRefGoogle Scholar
  10. 10.
    F.A. Bovey, P.A. Mirau, NMR of Polymers (Academic Press, San-Diego, 1996)Google Scholar
  11. 11.
    K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, San Diego, 1999)Google Scholar
  12. 12.
    R.C. Crosby, J.F. Haw, Macromolecules 20, 2324–2326 (1987)CrossRefGoogle Scholar
  13. 13.
    S. Paasch, K. Kruger, B. Thomas, Solid State Nucl. Magn. Reson. 4, 267–280 (1995)CrossRefGoogle Scholar
  14. 14.
    S. Paasch, B. Thomas, K. Kruger, Phosphorus Sulfur Silicon Relat. Elem. 111, 646 (1996)Google Scholar
  15. 15.
    B. Thomas, S. Paasch, S. Steuernagel, K. Eichele, Solid State Nucl. Magn. Reson. 20, 108–117 (2001)CrossRefGoogle Scholar
  16. 16.
    J.A. Klein, A.T. Bell, D.S. Soong, Macromolecules 20, 782–789 (1987)CrossRefGoogle Scholar
  17. 17.
    R.M. Orr, M.J. Duer, Solid State Nucl. Magn. Reson. 30, 130–134 (2006)CrossRefGoogle Scholar
  18. 18.
    R.S. Stein, B. Elena, L. Emsley, Chem. Phys. Lett. 458, 391–395 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alexey S. Borisov
    • 1
  • Paul Hazendonk
    • 1
  • Paul G. Hayes
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations