Advertisement

Organometallic Derivatives of Cyclotriphosphazene as Precursors of Nanostructured Metallic Materials: A New Solid State Method

  • Carlos Díaz
  • María Luisa Valenzuela
  • Luis Zúñiga
  • Colm O’Dwyer
Article

Abstract

The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.

Keywords

Organometallic Cyclotriphosphazenes Nanomaterials Solid-state 

Notes

Acknowledgments

The authors acknowledge the financial support of FONDECYT project 1085011.

Supplementary material

10904_2009_9286_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1842 kb)

References

  1. 1.
    A.S. Edelstein, R.C. Cammarata (eds.), Nanomaterials: Synthesis Properties and Applications (J. W. Arrowsmith Ltd, Bristol, 2000)Google Scholar
  2. 2.
    K.J. Klabunde (ed.), Nanoscale Materials in Chemistry (Wiley Interscience, New York, 2001)Google Scholar
  3. 3.
    C.N. Rao, A. Muller, A.K. Cheetham (eds.), The Chemistry of Nanomaterials, Synthesis, Properties and Applications, vol. 2 (Wiley-VCH, Weinheim, 2004), pp. 170–207Google Scholar
  4. 4.
    A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002)CrossRefGoogle Scholar
  5. 5.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)CrossRefGoogle Scholar
  6. 6.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  7. 7.
    R. Petersen, D. Foucher, B. Tang, A. Lough, N. Raju, J.E. Greedan, I. Manners, Chem. Mater. 7, 2045 (1995)CrossRefGoogle Scholar
  8. 8.
    T. Shimizu, T. Teranishi, S. Hasegawa, M.J. Miyake, Phys. Chem. B 107, 2719 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Teranis, S. Hasegawa, T. Shimizu, M. Miyake, Adv. Mater. 13, 1699 (2001)CrossRefGoogle Scholar
  10. 10.
    M.M. Maye, W. Zheng, F.L. Leibowitz, N.K. Ly, Ch.J. Zhong, Langmuir 16, 490 (2000)CrossRefGoogle Scholar
  11. 11.
    E.R. Leite, N.L.V. Carreño, E. Longo, F.M. Pontes, A. Barison, A.G. Ferreiro, Y. Manitte, J.A. Varela, Chem. Mater. 14, 3722 (2002)CrossRefGoogle Scholar
  12. 12.
    C. Díaz, M.L. Valenzuela, Horizons in Polymer Research, ed. by R.B. Bregg (Nova SciencePublishers, New York, 2005) Chapter 6Google Scholar
  13. 13.
    C. Díaz, P. Castillo, J. Inorg. Organomet. Polym. 11, 183 (2002)CrossRefGoogle Scholar
  14. 14.
    C. Díaz, P. Castillo, G.A. Carriedo, P. Gómez-Elipe, F.J. García Alonso, Macromol. Phys. Chem. 203, 1912 (2002)CrossRefGoogle Scholar
  15. 15.
    G.A. Carriedo, F.J. García-Alonso, P. Gómez-Elipe, C. Díaz, N. Yutronic, J. Chilean Chem. Soc. 48, 25 (2003)Google Scholar
  16. 16.
    C. Díaz, P. Castillo, Polym. Bull. 50, 123 (2003)CrossRefGoogle Scholar
  17. 17.
    C. Díaz, M.L. Valenzuela, M. Barbosa, Mater. Res. Bull. 9, 39 (2004)Google Scholar
  18. 18.
    G.A. Carriedo, F.J. García Alonso, J.L. García Álvarez, C. Díaz, N. Yutronic, Polyhedron 21, 2579 (2002)CrossRefGoogle Scholar
  19. 19.
    M.A. Olshavsky, H.R. Allcock, Chem. Mater. 9, 1367 (1997)CrossRefGoogle Scholar
  20. 20.
    C.H. Walker, J.St. John, P. Wisian-Neilson, J. Am. Chem. Soc. 123, 3846 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Jung, T. Kmecko, Ch.L. Claypool, H. Zhang, P. Wisian-Neilson, Macromolecules 38, 2122 (2005)CrossRefGoogle Scholar
  22. 22.
    C. Díaz, M.L. Valenzuela, Macromolecules 39, 103 (2006)CrossRefGoogle Scholar
  23. 23.
    C. Díaz, P. Castillo, M.L. Valenzuela, J. Clust. Sci. 16, 515 (2005)CrossRefGoogle Scholar
  24. 24.
    C. Díaz, M.L. Valenzuela, J. Inorg. Organomet. Polym. 16, 123 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Díaz, M.L. Valenzuela, S. Ushak, V. Lavayen, C. O’Dwyer, J. Nanosci. Nanotechnol. 9, 1825 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Díaz, M.L. Valenzuela, D. Bravo, V. Lavayen, C. O’Dwyer, Inorg. Chem. 47, 11561 (2008)CrossRefGoogle Scholar
  27. 27.
    C. Díaz, I. Izquierdo, Polyhedron 18, 1479 (1999)CrossRefGoogle Scholar
  28. 28.
    C. Díaz, I. Izquierdo, F. Mendizábal, N. Yutronic, Inorg. Chim. Acta 294, 20 (1999)CrossRefGoogle Scholar
  29. 29.
    G.A. Carriedo, F.J. García Alonso, J.L. García Álvarez, C. Díaz, N. Yutronic, Polyhedron 21, 2587 (2002)CrossRefGoogle Scholar
  30. 30.
    C. Díaz, F. Mendizábal, Bol. Soc. Chil. Quim. 46, 293 (2001)Google Scholar
  31. 31.
    C. Díaz, M. Barbosa, Z. Godoy, Polyhedron 23, 1027 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Gleria, R. De Jaeger (eds.), Applicative Aspects of Cyclophospahezenes (Nova Science Publishers, New York, 2004)Google Scholar
  33. 33.
    R. De Jaeger, M. Gleria, Prog. Polym. Sci. 23, 173 (1998)Google Scholar
  34. 34.
    V. Chandrasekhar, K.R. Justin Thomas, J. Appl. Organomet. Chem. 1, 7 (1993)Google Scholar
  35. 35.
    V. Chandrasekhar, S. Nagendran, Chem. Soc. Rev. 3, 193 (2001)CrossRefGoogle Scholar
  36. 36.
    M.F. Lappert, K. Srivastaca, J. Chem. Soc. A 193 (1996)Google Scholar
  37. 37.
    H.R. Allcock, Acc. Chem. Res. 12, 352 (1979)CrossRefGoogle Scholar
  38. 38.
    D.E. Brown, K. Ramachandra, K.R. Carter, C.W. Allen, Macromolecules 34, 2870 (2001)CrossRefGoogle Scholar
  39. 39.
    S.J. Maynard, T.R. Sharp, J.F. Haw, Macromolecules 24, 2794 (1991)CrossRefGoogle Scholar
  40. 40.
    D. Kumar, A.D. Gupta, Macromolecules 28, 6323 (1995)CrossRefGoogle Scholar
  41. 41.
    H.R. Allcock, G.S. McDonnell, G.H. Riding, I. Manners, Chem. Mater. 2, 425 (1990)CrossRefGoogle Scholar
  42. 42.
    G.A. Carriedo, J.F. García Alonso, C. Díaz, M.L. Valenzuela, Polyhedron 25, 105 (2005)CrossRefGoogle Scholar
  43. 43.
    H.R. Allcock, K.D. Lavin, N.M. Tollefson, T.I. Evan, Organometallics 2, 267 (1983)CrossRefGoogle Scholar
  44. 44.
    H.R. Allcock, A.A. Dembek, E.H. Klingenberg, Macromolecules 24, 5208 (1991)CrossRefGoogle Scholar
  45. 45.
    T.I. Trentler, T.E. Denler, J.F. Bertory, A. Agrawd, V.L. Colvin, J. Am. Chem. Soc. 121, 16313 (1999)CrossRefGoogle Scholar
  46. 46.
    G. Zhang, L. Gao, Langmuir 19, 967 (2003)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, J. Li, J. Wang, Chem. Mater. 18, 2917 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Perera, N. Zelenski, E. Gillan, Chem. Mater. 18, 2381 (2006)CrossRefGoogle Scholar
  49. 49.
    I.C. Mancu, J.M. Millet, J.J. Sandulescu, Serb. Chem.Soc. 70, 791 (2005)CrossRefGoogle Scholar
  50. 50.
    I.C. Marcu, J. Sandulescu, J.M. Millet, Appl. Catal. A 227, 309 (2002)CrossRefGoogle Scholar
  51. 51.
    A. Laachechi, M. Cochez, E. Levy, P. Gaudon, M. Ferrol, J.M. López-Cuesta, Polym. Adv. Technol. 17, 327 (2006)CrossRefGoogle Scholar
  52. 52.
    W. Suchank, M. Yoshimine, J. Mater. Res. 13, 94 (1998)CrossRefGoogle Scholar
  53. 53.
    J. Sanz, J.E. Iglesias, J. Soria, E.R. Grilla, M.A.G. Aranda, S. Bruque, Chem. Mater. 9, 996 (1997)CrossRefGoogle Scholar
  54. 54.
    P. Looss, A.M. Le Ray, G. Grimandi, G. Daculsi, C. Merle, Biomaterials 22, 2785 (2001)CrossRefGoogle Scholar
  55. 55.
    K.E. Lipinska-Kalita, M.B. Kneger, S. Carlson, A.M. Krogh Andersen, Physica B 337, 221 (2003)CrossRefGoogle Scholar
  56. 56.
    A.G. Dias, L.M.S. Skakle, I.R. Gibson, M.A. Lopez, J.D. Santos, J. Non-Cryst. Solids 351, 810 (2005)CrossRefGoogle Scholar
  57. 57.
    V. Karthuis, N. Khosrovani, A.W. Sleight, N. Roberts, R. Dupree, W.W. Warren Jr, Chem. Mater. 7, 412 (1995)CrossRefGoogle Scholar
  58. 58.
    C. Diaz, M.L. Valenzuela, E. Spodine, Y. Moreno, O. Peña, J. Clust. Sci. 8(31), 59 (2007)Google Scholar
  59. 59.
    F.A. Cotton, J.T. Mague, Inorg. Chem. 5, 317 (1966)CrossRefGoogle Scholar
  60. 60.
    M.T. Colomer, J.R. Jurado, Chem. Mater. 12, 923 (2000)CrossRefGoogle Scholar
  61. 61.
    L. Ji, J. Lin, H.C. Zeng, Chem. Mater. 13, 2403 (2001)CrossRefGoogle Scholar
  62. 62.
    W. Dmowski, T. Egani, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, J. Phys. Chem. B 103, 12677 (2002)CrossRefGoogle Scholar
  63. 63.
    C. Díaz, M.L. Valenzuela, N. Yutronic, J. Inorg. Organomet. Polym. Mater. 17, 577 (2007)CrossRefGoogle Scholar
  64. 64.
    N. Xu, M. Sun, W. Cao, N. Yao, E.G. Wang, Appl. Surf. Sci. 157, 84 (2000)CrossRefGoogle Scholar
  65. 65.
    M. Sun, N. Xu, W. Cao, E. Wang, J. Mater. Res. 15, 927 (2000)CrossRefGoogle Scholar
  66. 66.
    J.F. Keggin, R. Proc, Soc. Ser. A 144, 75 (1934)CrossRefGoogle Scholar
  67. 67.
    A. Talledo, C.G. Granqvist, J. Appl. Phys. 77, 4655 (1995)CrossRefGoogle Scholar
  68. 68.
    J. Livage, Chem. Mater. 3, 758 (1991)CrossRefGoogle Scholar
  69. 69.
    J.L. Solis, S. Saukko, L. Kish, C.G. Granquist, V. Lantto, Thin Solid Films 391, 255 (2001)CrossRefGoogle Scholar
  70. 70.
    P. Ponzi, C. Duschatzky, A. Carrascull, E. Ponzi, Appl. Catal. A 169, 373 (1998)CrossRefGoogle Scholar
  71. 71.
    G. Gu, B. Zheng, W.Q. Han, S. Roth, J. Liu, Nano Lett. 2, 849 (2002)CrossRefGoogle Scholar
  72. 72.
    Q. Han, C. Wang, J. Liu, Adv. Mater. 15, 411 (2003)CrossRefGoogle Scholar
  73. 73.
    H. Wang, X. Quan, Y. Zhang, S. Chen, Nanotehnology 19, 065704 (2008)CrossRefGoogle Scholar
  74. 74.
    J. Yu, H. Yu, M.L. Guo, S. Mann, Small 4, 87 (2008)CrossRefGoogle Scholar
  75. 75.
    K. Hong, M. Xie, R. Hu, H. Wu, Nanotechnology 19, 085604 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos Díaz
    • 1
  • María Luisa Valenzuela
    • 1
  • Luis Zúñiga
    • 1
  • Colm O’Dwyer
    • 2
  1. 1.Departamento de Química, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Department of Physics and Materials & Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations