The Improvement of Electrical Property of Multiwalled Carbon Nanotubes with Plasma Modification and Chemical Oxidation in the Polymer Matrix

Article

Abstract

We prepared a series of multiwalled carbon nanotube/polymer nanocomposites with two types of tube. One was plasma-modified with maleic anhydride and the other was modified with acid and the same plasma treatment. The morphology of the modified multiwalled carbon nanotube was observed by transmission and scanning electron microscopy. The surface structure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The optimum conductivity of multiwalled carbon nanotube/polymer nanocomposites with specific ratios was of the order of 10−3 S/cm for a total MWCNT content of 2.0 and 2.5 wt%.

Keywords

Carbon nanotube Conductivity Nanocomposite Plasma treatment 

Notes

Acknowledgements

The authors thank the Ministry of Economic Affairs of the Republic of China for financial support of this research under contract no. TDPA 97-EC-17-A-05-S1-0014, and the National Science Council of the Republic of China for the instruments and partial financial support of this research (NSC97-2221-E-006-027-MY3).

References

  1. 1.
    M. Xanthos (ed.), Functional Fillers for Plastic (Wiley, Weinheim, 2005)Google Scholar
  2. 2.
    M. Kluppel, The role of disorder in filler reinforcement of elastomers on various length scales, in Advances in polymer Science: Filler-Reinforced Elastomers Scanning Force Microscopy, ed. by H.-H. Kausch, S. Kobayashi, K.-S. Lee, I. Manners, O. Nuyken, S.I. Stupp, U.W. Suter, G. Wegner (Springer, Berlin Heidelberg, 2003), pp. 1–53Google Scholar
  3. 3.
    C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Chem. Phys. Lett. 364(3–4), 303–308 (2002)CrossRefGoogle Scholar
  4. 4.
    Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Compos. Sci. Technol. 63(11), 1637–1646 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Yu, H. Hu, E. Bekyarova, M.E. Itkis, J. Gao, B. Zhao, R.C. Haddon, Compos. Sci. Technol. 66(9), 1190–1197 (2006)CrossRefGoogle Scholar
  6. 6.
    M.S.P. Shaffer, A.H. Windle, Adv. Mater. 11(11), 937–941 (1999)CrossRefGoogle Scholar
  7. 7.
    J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Polymer 40(21), 5967–5971 (1999)CrossRefGoogle Scholar
  8. 8.
    E. Kymakis, I. Alexandou, G.A.J. Amaratunga, Synth. Met. 127(1–3), 59–62 (2002)CrossRefGoogle Scholar
  9. 9.
    H. Li, F. Cheng, A.M. Duft, A. Adronov, J. Am. Chem. Soc. 127(41), 14518–14524 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Qin, D. Qin, W.T. Ford, J.E. Herrera, D.E. Resasco, S.M. Bachilo, R.B. Weisman, Macromolecules 37(11), 3965–3967 (2004)CrossRefGoogle Scholar
  11. 11.
    Y.Z. You, C.Y. Hong, C.Y. Pan, Macromol. Rapid Commun. 27(23), 2001–2006 (2006)Google Scholar
  12. 12.
    C.-H. Tseng, C.-C. Wang, C.-Y. Chen, J. Nanosci. Nanotechnol. 6(12), 3897–3903 (2006)CrossRefGoogle Scholar
  13. 13.
    C.-H. Tseng, C.-C. Wang, C.-Y. Chen, Chem. Mat. 19(2), 308–315 (2007)CrossRefGoogle Scholar
  14. 14.
    W.-J. Chou, C.-C. Wang, C.-Y. Chen, Compos. Sci. Technol. 68(10–11), 2208–2213 (2008)CrossRefGoogle Scholar
  15. 15.
    G.-W. Lee, J. Kim, J. Yoon, J.-S. Bae, B.C. Shin, I.S. Kim, W. Oh, M. Ree, Thin Solid Films 516(17), 5781–5784 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Andrews, D. Jacques, D. Qian, E.C. Dickey, Carbon 39(11), 1681–1687 (2001)CrossRefGoogle Scholar
  17. 17.
    H. Yusa, T. Watanuki, Carbon 43(3), 519–523 (2005)CrossRefGoogle Scholar
  18. 18.
    V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46(6), 833–840 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Li, M. Boggs, T.P. Beebe, C.P. Huang, Carbon 46(3), 466–475 (2008)CrossRefGoogle Scholar
  20. 20.
    G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, E. Sacher, Carbon 46(2), 196–205 (2008)CrossRefGoogle Scholar
  21. 21.
    X. He, F. Zhang, R. Wang, W. Liu, Carbon 45(13), 2559–2563 (2007)CrossRefGoogle Scholar
  22. 22.
    K.J. Ziegler, Z. Gu, H. Peng, E.L. Flor, R.H. Hauge, R.E. Smalley, J. Am. Chem. Soc. 127(5), 1541–1547 (2005)CrossRefGoogle Scholar
  23. 23.
    I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon 43(15), 3124–3131 (2005)CrossRefGoogle Scholar
  24. 24.
    C. Bower, A. Kleinhammes, Y. Wu, O. Zhou, Chem. Phys. Lett. 288(2–4), 481–486 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B 107(16), 3712–3718 (2003)CrossRefGoogle Scholar
  26. 26.
    M.T. Martinez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W.K. Maser, Carbon 41(12), 2247–2256 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Hu, B. Zhao, M.E. Itkis, R.C. Haddon, J. Phys. Chem. B 107(50), 13838–13842 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wan-Jung Chou
    • 1
  • Cheng-Chien Wang
    • 2
  • Chuh-Yung Chen
    • 1
  1. 1.Department of Chemical EngineeringNational Cheng-Kung UniversityTainanTaiwan
  2. 2.Department of Chemical and Materials EngineeringSouthern Taiwan UniversityTainanTaiwan

Personalised recommendations