Advertisement

The Fluorescence and Electroluminescence Properties of the Carbazole–Phenylazomethine Double Layer-Type Dendrimer

  • Ken Albrecht
  • Yuto Kasai
  • Kimihisa YamamotoEmail author
Article

Abstract

The fluorescence properties of double layer-type dendrimers with carbazole as the outer layer and phenylazomethine as the inner layer of the dendron with a zinc porphyrin core were studied. Based on the fluorescence quantum yield (solution), the effect of the bulky dendron to inhibit the interaction of the chromophores was confirmed. Additionally, the efficient light-harvesting property of the double layer-type dendron was revealed by the fluorescence measurement at several excitation wavelengths. These dendrimers were used as an emitting-layer in an OLED device. The electroluminescence of the core porphyrin was observed and it was shown that the double layer-type dendrimer with a luminescent core has the potential to be a hole-transporting/emitting material.

Keywords

Carbazole Phenylazomethine Dendrimer Porphyrin OLED Light-harvesting antenna 

Notes

Acknowledgement

This work was partially supported by Grants-in-Aid for Scientific Research (Nos. 19205020, 19022034), the Core Research for Evolution Science and Technology (CREST) program of the Japan Science and Technology (JST) Agency, and Global COE program “High-Level Global Cooperation for Leading-Edge Platform on Access Space (C12)”.

References

  1. 1.
    C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  2. 2.
    A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 63, 2627 (1993)CrossRefGoogle Scholar
  5. 5.
    J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995)CrossRefGoogle Scholar
  6. 6.
    B. Geffroy, P. le Roy, C. Prat, Polym. Int. 55, 572 (2006)CrossRefGoogle Scholar
  7. 7.
    O. Nuyken, S. Jungermann, V. Wiederhirn, E. Bacher, K. Meerholz, Monatsh. Chem. 137, 811 (2006)CrossRefGoogle Scholar
  8. 8.
    K.Y. Hwang, M.H. Lee, H. Jang, Y. Sung, J.S. Lee, S.H. Kim, Y. Do, Dalton Trans. 14, 1818 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Ichikawa, S. Fujimoto, Y. Miyazaki, T. Koyama, N. Yokoyama, T. Miki, Y. Taniguchi, Org. Electron. 9, 77 (2008)Google Scholar
  10. 10.
    V.I. Adamovich, S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W. D’Andrade, S.R. Forrest, Org. Electron. 4, 77 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, K. Shibata, Chem. Lett. 22, 905 (1993)CrossRefGoogle Scholar
  12. 12.
    J. Kido, Y. Iizumi, Chem. Lett. 26, 963 (1997)CrossRefGoogle Scholar
  13. 13.
    N. Nakmura, S. Wakabayashi, K. Miyairi, T. Fujii, Chem. Lett. 23, 1741 (1994)CrossRefGoogle Scholar
  14. 14.
    C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995)CrossRefGoogle Scholar
  15. 15.
    K.R.J. Thomas, J.T. Lin, Y.T. Tao, C.W. Ko, Adv. Mater. 12, 1949 (2000)CrossRefGoogle Scholar
  16. 16.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. MacKay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539 (1990)CrossRefGoogle Scholar
  17. 17.
    N.C. Greenham, S.C. Moratti, D.D.C. Bradley, R.H. Friend, A.B. Holmes, Nature 365, 628 (1993)CrossRefGoogle Scholar
  18. 18.
    N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996)CrossRefGoogle Scholar
  19. 19.
    S. Welter, K. Brunner, J.W. Hofstraat, L. De Cola, Nature 421, 54 (2003)CrossRefGoogle Scholar
  20. 20.
    D.A. Tomalia, Prog. Polym. Sci. 30, 294 (2005)CrossRefGoogle Scholar
  21. 21.
    A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99, 1665 (1999)CrossRefGoogle Scholar
  22. 22.
    M. Fischer, F. Vögtle, Angew. Chem., Int. Ed. 38, 884 (1999)CrossRefGoogle Scholar
  23. 23.
    D.A. Tomalia, A.M. Naylor, W.A. Goddard III, Angew. Chem., Int. Ed. Engl 29, 138 (1990)CrossRefGoogle Scholar
  24. 24.
    S.C. Lo, P.L. Burn, Chem. Rev. 107, 1097 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Thelakkat, Macromol. Mater. Eng. 287, 442 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Bettenhausen, P. Strohriegl, Adv. Mater. 8, 507 (1996)CrossRefGoogle Scholar
  27. 27.
    N. Tamoto, C. Adachi, K. Nagai, Chem. Mater. 9, 1077 (1997)CrossRefGoogle Scholar
  28. 28.
    J. Bettenhausen, P. Strohriegl, W. Brutting, H. Tokuhisa, T. Tsutsui, J. Appl. Phys. 82, 4957 (1997)CrossRefGoogle Scholar
  29. 29.
    J. Bettenhausen, M. Greczmiel, M. Jandke, P. Strohriegl, Synth. Met. 91, 223 (1997)CrossRefGoogle Scholar
  30. 30.
    M. Thelakkat, H.W. Schmidt, Adv. Mater. 10, 219 (1998)CrossRefGoogle Scholar
  31. 31.
    M. Halim, J.N.G. Pillow, I.D.W. Samuel, P.L. Burn, Adv. Mater. 11, 371 (1999)CrossRefGoogle Scholar
  32. 32.
    Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, Y. Taga, J. Am. Chem. Soc. 122, 1832 (2000)CrossRefGoogle Scholar
  33. 33.
    J.M. Lupton, L.R. Hemingway, I.D.W. Samuel, P.L. Burn, J. Mater. Chem. 10, 867 (2000)CrossRefGoogle Scholar
  34. 34.
    H.C. Yeh, R.H. Lee, L.H. Chan, T.Y.J. Lin, C.T. Chen, E. Balasubramaniam, Y.T. Tao, Chem. Mater. 13, 2788 (2001)CrossRefGoogle Scholar
  35. 35.
    J.M. Lupton, I.D.W. Samuel, R. Beavington, P.L. Burn, H. Bässler, Adv. Mater. 13, 258 (2001)CrossRefGoogle Scholar
  36. 36.
    D. Ma, J.M. Lupton, I.D.W. Samuel, S.C. Lo, P.L. Burn, Appl. Phys. Lett. 81, 2285 (2002)CrossRefGoogle Scholar
  37. 37.
    T.W. Kwon, M.M. Alam, S.A. Jenekhe, Chem. Mater. 16, 4657 (2004)CrossRefGoogle Scholar
  38. 38.
    X.Y. Cao, X.H. Liu, X.H. Zhou, Y. Zhang, Y. Jiang, Y. Cao, Y.X. Cui, J. Pei, J. Org. Chem. 69, 6050 (2004)CrossRefGoogle Scholar
  39. 39.
    D. Ma, Y. Hu, Y. Zhang, L. Wang, X. Jing, F. Wang, J.M. Lupton, I.D.W. Samuel, S. Lo, P.L. Burn, Synth. Met. 137, 1125 (2003)CrossRefGoogle Scholar
  40. 40.
    A. Nantalaksakul, D.R. Reddy, C.J. Bardeen, S. Thayumanavan, Photosynth. Res. 87, 133 (2006)CrossRefGoogle Scholar
  41. 41.
    A.W. Freeman, S.C. Koene, P.R.L. Malenfant, M.E. Thompson, J.M.J. Fréchet, J. Am. Chem. Soc. 122, 12385 (2000)CrossRefGoogle Scholar
  42. 42.
    S. Setayesh, A.C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E.J.W. List, G. Leising, J. Am. Chem. Soc. 123, 946 (2001)CrossRefGoogle Scholar
  43. 43.
    C.C. Kwok, M.S. Wong, Macromolecules 34, 6821 (2001)CrossRefGoogle Scholar
  44. 44.
    A. Pogantsch, F.P. Wenzl, E.J.W. List, G. Leising, A.C. Grimsdale, K. Müllen, Adv. Mater. 14, 1061 (2002)CrossRefGoogle Scholar
  45. 45.
    P. Du, W.H. Zhu, Y.Q. Xie, F. Zhao, C.F. Ku, Y. Cao, C.P. Chang, H. Tian, Macromolecules 37, 4378 (2004)Google Scholar
  46. 46.
    J.P.J. Markham, S.C. Lo, S.W. Magennis, P.L. Burn, I.D.W. Samuel, Appl. Phys. Lett. 80, 2645 (2002)CrossRefGoogle Scholar
  47. 47.
    S.C. Lo, N.A.H. Male, J.P.J. Markham, S.W. Magennis, P.L. Burn, O.V. Salata, D.W. Samuel, Adv. Mater. 14, 975 (2002)Google Scholar
  48. 48.
    S.C. Lo, E.B. Namdas, P.L. Burn, I.D.W. Samuel, Macromolecules 36, 9721 (2003)CrossRefGoogle Scholar
  49. 49.
    T.D. Anthopoulos, M.J. Frampton, E.B. Namdas, P.L. Burn, I.D.W. Samuel, Adv. Mater. 16, 557 (2004)CrossRefGoogle Scholar
  50. 50.
    J.P.J. Markham, E.B. Namdas, T.D. Anthopoulos, I.D.W. Samuel, G.J. Richards, P.L. Burn, Appl. Phys. Lett. 85, 1463 (2004)CrossRefGoogle Scholar
  51. 51.
    M.J. Frampton, E.B. Namdas, S.C. Lo, P.L. Burn, I.D.W. Samuel, J. Mater. Chem. 14, 2881 (2004)CrossRefGoogle Scholar
  52. 52.
    N.D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 125, 5356 (2003)CrossRefGoogle Scholar
  53. 53.
    F. Loiseau, S. Campagna, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 127, 11352 (2005)CrossRefGoogle Scholar
  54. 54.
    T.H. Xu, R. Lu, X.P. Qiu, X.L. Liu, P.C. Xue, C.H. Tan, C.Y. Bao, Y.Y. Zhao, Eur. J. Org. Chem. 2006, 4014 (2006)CrossRefGoogle Scholar
  55. 55.
    T. Konno, M.E. El-Khouly, Y. Nakamura, K. Kinoshita, Y. Araki, O. Ito, T. Yoshihara, S. Tobita, J. Nishimura, J. Phys. Chem. C 112, 1244 (2008)CrossRefGoogle Scholar
  56. 56.
    J. Lu, P.F. Xia, P.K. Lo, Y. Tao, M.S. Wong, Chem. Mater. 18, 6194 (2006)CrossRefGoogle Scholar
  57. 57.
    K.T. Wong, Y.H. Lin, H.H. Wu, F. Fungo, Org. Lett. 9, 4531 (2007)CrossRefGoogle Scholar
  58. 58.
    K. Albrecht, K. Yamamoto, J. Photopoly. Sci. Technol. 19, 175 (2006)CrossRefGoogle Scholar
  59. 59.
    K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, H. Chiba, Nature 415, 509 (2002)CrossRefGoogle Scholar
  60. 60.
    M. Higuchi, S. Shiki, K. Ariga, K. Yamamoto, J. Am. Chem. Soc. 123, 4414 (2001)CrossRefGoogle Scholar
  61. 61.
    K. Yamamoto, T. Imaoka, Bull. Chem. Soc. Jpn. 79, 511 (2006)CrossRefGoogle Scholar
  62. 62.
    K. Albrecht, Y. Kasai, A. Kimoto, K. Yamamoto, Macromolecules 41, 3793 (2008)CrossRefGoogle Scholar
  63. 63.
    A. Kimoto, J.S. Cho, M. Higuchi, K. Yamamoto, Macromolecules 37, 5531 (2004)CrossRefGoogle Scholar
  64. 64.
    A. Kimoto, J.S. Cho, M. Higuchi, K. Yamamoto, Macromol. Symp. 209, 51 (2004)CrossRefGoogle Scholar
  65. 65.
    A. Kimoto, J.S. Cho, K. Ito, D. Aoki, T. Miyake, K. Yamamoto, Macromol. Rapid Commun. 26, 597 (2005)CrossRefGoogle Scholar
  66. 66.
    Q. Zhang, Y.F. Hu, Y.X. Cheng, G.P. Su, D.G. Ma, L.X. Wang, X.B. Jing, F.S. Wang, Synth. Met. 137, 1111 (2003)CrossRefGoogle Scholar
  67. 67.
    J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, dv. Funct. Mater. 16, 575 (2006)CrossRefGoogle Scholar
  68. 68.
    M.H. Tsai, Y.H. Hong, C.H. Chang, H.C. Su, C.C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J.V. Grazulevicius, C.P. Hsu, Adv. Mater. 19, 862 (2007)CrossRefGoogle Scholar
  69. 69.
    J.S. Cho, K. Takanashi, M. Higuchi, K. Yamamoto, Synth. Met. 150, 79 (2005)CrossRefGoogle Scholar
  70. 70.
    N. Satoh, J.S. Cho, M. Higuchi, K. Yamamoto, J. Am. Chem. Soc. 125, 8104 (2003)CrossRefGoogle Scholar
  71. 71.
    K. Albrecht, A. Kimoto, J.S. Cho, Y. Matsuura, K. Yamamoto, J. Photopolym. Sci. Technol. 21, 181 (2008)CrossRefGoogle Scholar
  72. 72.
    A. Kimoto, K. Masachika, J.S. Cho, M. Higuchi, K. Yamamoto, Chem. Mater. 16, 5706 (2004)CrossRefGoogle Scholar
  73. 73.
    T. Imaoka, R. Tanaka, S. Arimoto, M. Sakai, M. Fujii, K. Yamamoto, J. Am. Chem. Soc. 127, 13896 (2005)CrossRefGoogle Scholar
  74. 74.
    S. Campagna, S. Serroni, F. Puntoriero, C. Di Pietro, V. Ricevuto, in Electron Transfer in Chemistry, vol. 5, ed. by V. Balzani (Wiley-VCH, Weinheim, 2001)Google Scholar
  75. 75.
    S.K. Lower, M.A. El-Sayed, Chem. Rev. 66, 199 (1966)CrossRefGoogle Scholar
  76. 76.
    M.A. El-Sayed, J. Chem. Phys. 36, 573 (1962)CrossRefGoogle Scholar
  77. 77.
    M.A. El-Sayed, J. Chem. Phys. 38, 2834 (1963)CrossRefGoogle Scholar
  78. 78.
    S. Speiser, Chem. Rev. 96, 1953 (1996)CrossRefGoogle Scholar
  79. 79.
    T.H. Förster, Discuss. Faraday Soc. 27, 7 (1959)CrossRefGoogle Scholar
  80. 80.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  81. 81.
    L. De Cola, P. Belser, in Electron Transfer in Chemistry, vol. 5, ed. by V. Balzani (Wiley-VCH, Weinheim, 2001)Google Scholar
  82. 82.
    3D model of ZnPG2-2 was optimized by a MOPAC (MM-AM1) calculation with the CAChe Worksystem ver. 5.04 (Fujitsu)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations