A Calcium(II)-Based l-Arginine for ATP Binding and Hydrolysis

  • Yanqing Ma
  • Gongxuan LuEmail author


The supramolecular recognition of Ca(II) and N α-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP were investigated using 1H and 31P NMR spectra. In the Ca(II)–ATP–TAME ternary system, Ca2+ and TAME bind with ATP via the phosphate chain and adenine ring of ATP. The binding forces are mainly electrostatic and cation (Ca2+)–π and π–π stacking interaction. Furthermore, the hydrolysis of ATP catalyzed by Ca(II) and TAME was studied at pH 7.0 and 60 °C using 31P NMR spectra. Kinetics studies show that the ATP hydrolysis rate constant is 0.1035 h−1 in the Ca(II)–TAME–ATP ternary system, whereas the value is 8.5 × 10−3 h−1 under the same conditions without TAME and Ca2+. The Ca(II) ions and TAME accelerate the ATP hydrolysis process about 12-fold. The proposed mechanism of ATP hydrolysis catalyzed by Ca2+–TAME occurs through an addition–elimination reaction sequence. These results can help us get more useful information at the molecular level about the key amino acid residue(s) and metal ions that serve as cofactors in the ATPase effect on ATP hydrolysis/synthesis.


ATP Ca(II) Nα-4-tosyl-l-arginine methyl ester hydrochloride Recognition Catalytic hydrolysis 



The authors thank for Ms. Xiaoning Wei for technical assistance in obtaining NMR spectra. This work was supported by the National Natural Science Foundation of China (No. 90210027).


  1. 1.
    H. Sigel, Chem. Soc. Rev. 22, 255 (1993)CrossRefGoogle Scholar
  2. 2.
    T.P. Weber, W.R. Widger, H. Kohn, Biochemistry 42, 1652 (2003)CrossRefGoogle Scholar
  3. 3.
    T. Humphry, M. Forconi, N.H. Williams, A.C. Hengge, J. Am. Chem. Soc. 126, 11864 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Jagoda, R. Krämer, Inorg. Chem. Commun. 8, 697 (2005)CrossRefGoogle Scholar
  5. 5.
    C. Bazzicalupi, A. Bencini, A. Bianchi, A. Danesi, C. Giorgi, C. Lodeiro, F. Pina, S. Santarelli, B. Valtancoli, Chem. Commun. 2630 (2005)Google Scholar
  6. 6.
    N.H. Williams, J. Am. Chem. Soc. 122, 12023 (2000)CrossRefGoogle Scholar
  7. 7.
    J.A. Aguilar, A.B. Descalzo, P. Díaz, V. Fusi, E. García-España, S.V. Luis, M. Micheloni, J.A. Ramírez, P. Romani, C. Soriano, J. Chem. Soc. Perkin Trans. 2 1187 (2000)Google Scholar
  8. 8.
    A. Andres, J. Arag, A. Bencini, A. Bianchi, A. Domenech, V. Fusi, E. Garcia, P. Paoletti, J. Ramfrez, Inorg. Chem. 32, 3418 (1993)CrossRefGoogle Scholar
  9. 9.
    R. Ge, H. Lin, X. Xu, X. Sun, H. Lin, S. Zhu, B. Ji, F. Li, H. Wu, J. Inorg. Biochem. 98, 917 (2004)CrossRefGoogle Scholar
  10. 10.
    C. Bazzicalupi, S. Biagini, A. Bencini, E. Faggi, C. Giorgi, I. Matera, B. Valtancoli, Chem. Commun. 4087 (2006)Google Scholar
  11. 11.
    E. Ishikawa, T. Yamase, J. Inorg. Biochem. 100, 344 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Carmona, M. Molina, A. Rodríguez-Casado, Biophys. Chem. 119, 33 (2006)CrossRefGoogle Scholar
  13. 13.
    G. Borghesant, F. Pulidori, M. Remelli, R. Purrello, E. Rizzarelli, J. Chem. Soc., Dalton. Trans. 2095 (1990)Google Scholar
  14. 14.
    P. Kaczmarek, W. Szezepanik, M. Jeżowska-Bojczuk, Dalton Trans. 3653 (2005)Google Scholar
  15. 15.
    S. Nadanaciva, J. Weber, A.E. Senior, Biochemistry 38, 7670 (1999)CrossRefGoogle Scholar
  16. 16.
    S. Nadanaciva, J. Weber, S. Wilke-Mounts, A.E. Senior, Biochemistry 38, 15493 (1999)CrossRefGoogle Scholar
  17. 17.
    A.E. Senior, S. Nadanaciva, J. Weber, Biochim. Biophys. Acta 1553, 188 (2002)CrossRefGoogle Scholar
  18. 18.
    Y. Ma, G. Lu, Y. Li, S. Liu, L. Xian, Chin. J. Chem. 25, 1253 (2007)CrossRefGoogle Scholar
  19. 19.
    Y. Ma, G. Lu, Dalton Trans. 1081 (2008)Google Scholar
  20. 20.
    U. EI-Ayaan, I.M. Kenawy, Y.G. Abu EI-Reash, Spectrochim. Acta Part A 68, 211 (2007)CrossRefGoogle Scholar
  21. 21.
    M.M. Khalil, A.E. Attia, J. Chem. Eng. Data 44, 180 (1999)CrossRefGoogle Scholar
  22. 22.
    A.A.A. Boraei, S.A. Ibrahim, A.H. Mohamed, J. Chem. Eng. Data 44, 907 (1999)CrossRefGoogle Scholar
  23. 23.
    A.A.A. Boraei, F. Taha, A.H. Mohamed, J. Chem. Eng. Data 46, 267 (2001)CrossRefGoogle Scholar
  24. 24.
    L. Jiang, X. Mao, Spectrochim. Acta A 57, 1711 (2001)CrossRefGoogle Scholar
  25. 25.
    L. Jiang, X. Mao, Polyhedron 21, 435 (2002)CrossRefGoogle Scholar
  26. 26.
    R.M. Hughes, M.L. Waters, J. Am. Chem. Soc. 128, 12735 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Tatko, M.L. Waters, Protein Sci. 12, 2443 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Gasowska, R. Jastrzab, L. Lomozik, J. Inorg. Biochem. 101, 1362 (2007)CrossRefGoogle Scholar
  29. 29.
    A. Gasowska, J. Inorg. Biochem. 96, 346 (2003)CrossRefGoogle Scholar
  30. 30.
    A. Shanzer, J. Libman, S. Lifson, Pure Appl. Chem. 64, 1421 (1992)CrossRefGoogle Scholar
  31. 31.
    C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, P. Fornasari, C. Giorgi, C Marinelli, B. Valtancoli, Dalton Trans. 2564 (2003)Google Scholar
  32. 32.
    Y. Guo, Q. Ge, H. Lin, H.K. Lin, S. Zhu, C. Zhou, Biophys. Chem. 105, 119 (2003)CrossRefGoogle Scholar
  33. 33.
    D. Li, Z. Liao, Y. Wei, F. Du, M. Wang, W. Chen, W. Li, X. Mao, Dalton Trans. 2164 (2003)Google Scholar
  34. 34.
    F. Ramirez, J.F. Szamosi, J. Szamosi, J. Org. Chem. 45, 4748 (1980)CrossRefGoogle Scholar
  35. 35.
    P.G. Yohannes, M.P. Mertes, K.B. Mertes, J. Am. Chem. Soc. 107, 8288 (1985)CrossRefGoogle Scholar
  36. 36.
    N.H. Williams, Biochim. Biophys. Acta 1697, 279 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations