Surface Functionalization with Phosphazenes: Part 6. Modification of Polyethylene-Co-Polyvinylalcohol Copolymer Surface Plates with Fluorinated Alcohols and Azobenzene Derivatives Using Chlorinated Phosphazenes as Coupling Agents

  • Roberto Milani
  • Mario Gleria
  • Silvia Gross
  • Roger De Jaeger
  • Ahmed Mazzah
  • Leon Gengembre
  • Martine Frere
  • Charafeddine Jama
Article

Abstract

In this paper we describe a two-step surface modification process of poly(ethylene-co-vinyl alcohol) by exploiting hexachlorocyclophosphazene and poly(dichlorophosphazene) as coupling agents. Part of the P–Cl groups of the chlorophosphazenes is first reacted with the surface hydroxylic groups of the substrate to form covalent P–O–C bonds, the remaining being utilized for successive substitution reactions with different nucleophiles (i.e. 2,2,2-trifluoroethanol, heptadecafluorononanol and 4-hydroxyazobenzene). Modified surface properties, such as hydrophobicity improvement with fluorinated alcohols and photochromic features with the azobenzene derivative, were verified by contact angle measurements and UV–Vis spectroscopy, respectively, while changes in surface composition were demonstrated through XPS spectroscopy.

Keywords

Surface functionalization Poly(ethylene-co-vinyl alcohol) Phosphazene Fluorinated alcohols 4-Hydroxyazobenzene UV–Vis and XPS spectroscopy 

References

  1. 1.
    Y. Taga, J. Non Cryst. Solids 218, 335 (1997)CrossRefGoogle Scholar
  2. 2.
    A. Sharma, H. Jain, A.C. Miller, Surf. Interface Anal. 31, 369 (2001)CrossRefGoogle Scholar
  3. 3.
    R.C. Anderson, R.S. Muller, C.W. Tobias, J. Electrochem. Soc. 140, 1393 (1993)CrossRefGoogle Scholar
  4. 4.
    H. Neergaard Waltenburg, J. Yates, Chem. Rev. 95, 1589 (1995)CrossRefGoogle Scholar
  5. 5.
    J.M. Buriak, Chem. Rev. 105, 1271 (2002)CrossRefGoogle Scholar
  6. 6.
    J. Lin, J.A. Siddiqui, R.M. Ottenbrite, Polym. Adv. Technol. 12, 285 (2001)CrossRefGoogle Scholar
  7. 7.
    M.T.C. Chung, Functionalization of Polyolefins (Academic, London, 2002)Google Scholar
  8. 8.
    S.B. Idage, S. Badrinarayanan, Langmuir 14, 2780 (1998)CrossRefGoogle Scholar
  9. 9.
    F. Clément, B. Held, N. Soulem, C. Guimon, Eur. Phys. J. Appl. Phys. 18, 135 (2002)CrossRefGoogle Scholar
  10. 10.
    D.H. Carey, G.S. Ferguson, Macromolecules 27, 7254 (1998)CrossRefGoogle Scholar
  11. 11.
    L. Smith, C. Doyle, D.E. Gregonis, J.D. Andrade, J. Appl. Polym. Sci. 27, 1269 (2003)CrossRefGoogle Scholar
  12. 12.
    F. Garbassi, E. Occhiello, F. Polato, A. Brown, J. Mater. Sci. 22, 1450 (1987)CrossRefGoogle Scholar
  13. 13.
    I. Sutherland, D.M. Brewis, R.J. Health, E. Sheng, Surf. Interface Anal. 17, 507 (2004)CrossRefGoogle Scholar
  14. 14.
    F. Minto, M. Gleria, P. Bortolus, S. Daolio, B. Facchin, C. Pagura, A. Bolognesi, Eur. Polym. J. 25, 49 (1989)CrossRefGoogle Scholar
  15. 15.
    K.H. Chae, H.J. Jang, J. Polym. Sci. Part A: Polym. Chem. 40, 1200 (2002)CrossRefGoogle Scholar
  16. 16.
    R. Bradley, Radiation Technology Handbook (Marcel Dekker Inc., New York, 1984)Google Scholar
  17. 17.
    E.C. Onyiriuka, L.S. Hersh, W. Hertl, Appl. Spectrosc. 44, 808 (1990)CrossRefGoogle Scholar
  18. 18.
    M. Strobel, C.S. Lyons, K.L. Mittal (eds.), Plasma Surface Modification of Polymers. Relevance to Adhesion (VSP, Utrecht, 1994)Google Scholar
  19. 19.
    R. D’Agostino, P. Favia, C. Oehr, M.R. Wertheimer (eds.), Plasma Processes and Polymers (Wiley-VCH, Weinheim, 2005)Google Scholar
  20. 20.
    G. Djanic, Master Thesis, University of Padova, 2002Google Scholar
  21. 21.
    D. Barreca, G. Djanic, E. Tondello, R. Bertani, M. Gleria, Italian Patent, PD 000242 2002 (assigned to Consiglio Nazionale delle Ricerche)Google Scholar
  22. 22.
    R. Milani, Master Thesis, University of Padova, Italy, (2003)Google Scholar
  23. 23.
    A. Sassi, R. Milani, A. Venzo, M. Gleria, Des. Monomers Polym. 9, 627 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Silvestrelli, M. Gleria, R. Milani, A. Boscolo-Boscoletto, J. Inorg. Organomet. Polym. Mater. 16, 327 (2006)CrossRefGoogle Scholar
  25. 25.
    R. Milani, A. Sassi, A. Venzo, R. Bertani, L. Fambri, M. Gleria, Des. Monomers Polym. 10, 555 (2007)CrossRefGoogle Scholar
  26. 26.
    R. Milani, M. Gleria, A. Sassi, R. De Jaeger, A. Mazzah, L. Gengembre, M. Frere, C. Jama, Chem. Mater. 19, 4975 (2007)CrossRefGoogle Scholar
  27. 27.
    R. De Jaeger, A. Mazzah, L. Gengembre, M. Frere, C. Jama, R. Milani, R. Bertani, M. Gleria, J. Appl. Polym. Sci. 108, 3191 (2008)Google Scholar
  28. 28.
    A. Sassi, G. Maggioni, R. Milani, S. Carturan, M. Gleria, G. Della Mea, Surf. Coat. Technol. 201, 5829 (2007)CrossRefGoogle Scholar
  29. 29.
    H.R. Allcock, Phosphorus-Nitrogen Compounds. Cyclic, Linear and High Polymeric Systems (Academic, New York, 1972)Google Scholar
  30. 30.
    H.R. Allcock, Chemistry and Applications of Polyphosphazenes (John Wiley & Sons, New York, 2003)Google Scholar
  31. 31.
    M. Gleria, R. De Jaeger (eds.), Phosphazenes. A Worldwide Insight (NOVA Science Publishers, Hauppauge, 2004)Google Scholar
  32. 32.
    A.J. Vogel, A Textbook of Practical Organic Chemistry (Longman, London, 1970)Google Scholar
  33. 33.
    D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals (Pergamon Press, Oxford, 1980)Google Scholar
  34. 34.
    M. Helioui, R. De Jaeger, E. Puskaric, J. Heubel, Makromol. Chem. 183, 1137 (1982)CrossRefGoogle Scholar
  35. 35.
    G. D’Halluin, R. De Jaeger, J.P. Chambrette, P. Potin, Macromolecules 25, 1254 (1992)CrossRefGoogle Scholar
  36. 36.
    R. De Jaeger, M. Gleria, Prog. Polym. Sci. 23, 179 (1998)CrossRefGoogle Scholar
  37. 37.
    R. De Jaeger, P. Potin In Phosphazenes: A Worldwide Insight, ed. by M. Gleria, R. De Jaeger (eds) (NOVA Science Publishers, Hauppage, 2004), p. 25Google Scholar
  38. 38.
    R. De Jaeger, P. Potin Fr., Demande FR (1994), 2,697,008 (assigned to Elf-Atochem, France)Google Scholar
  39. 39.
    M. Gleria, F. Minto (1993) Italian Patent, 1,240,644 (assigned to Consiglio Nazionale delle Ricerche)Google Scholar
  40. 40.
    M. Irie, Pure Appl. Chem. 62, 1495 (1990)CrossRefGoogle Scholar
  41. 41.
    H. Durr, H. Bouas-Laurent (eds) Photochromism (Elsevier, Amsterdam, 2003), p. 165–192Google Scholar
  42. 42.
    D. Feakins, W.A. Last, N. Neemuchwala, R.A. Shaw, Chem. Ind. (London) 164 (1963)Google Scholar
  43. 43.
  44. 44.
    G.J. Bullen, J. Chem. Soc. A, 1450 (1971)Google Scholar
  45. 45.
    R.H. Boyd, L. Kesner, J. Am. Chem. Soc. 99, 4248 (1977)CrossRefGoogle Scholar
  46. 46.
    A. Elass, G. Vergoten, P. Dhamelincourt, R. Becquet, Electr. J. Theor. Chem. 2, 11 (1997)CrossRefGoogle Scholar
  47. 47.
    E. Giglio, F. Pompa, A. Ripamonti, J. Polym. Sci. 59, 293 (1962)CrossRefGoogle Scholar
  48. 48.
    H.R. Allcock, R.A. Arcus, Macromolecules 12, 1130 (1979)CrossRefGoogle Scholar
  49. 49.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roberto Milani
    • 1
  • Mario Gleria
    • 2
  • Silvia Gross
    • 2
  • Roger De Jaeger
    • 3
  • Ahmed Mazzah
    • 3
  • Leon Gengembre
    • 4
  • Martine Frere
    • 4
  • Charafeddine Jama
    • 5
  1. 1.Dipartimento di Scienze ChimicheUniversità di PadovaPadovaItaly
  2. 2.Istituto di Scienze e Tecnologie Molecolari (ISTM) del Consiglio Nazionale delle Ricerche, Sezione di Padova, c/o Dipartimento di Processi Chimici dell’IngegneriaUniversità di PadovaPadovaItaly
  3. 3.LASIR UMR-CNRS 8516USTLVilleneuve d’AscqFrance
  4. 4.Unité de Catalyse et Chimie du Solide UCCS CNRS UMR 8181USTLVilleneuve d’AscqFrance
  5. 5.Laboratoire PERF LSPES UMR 8008ENSCLVilleneuve d’AscqFrance

Personalised recommendations