Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications



Revolutionary developments in the fabrication of nanosized particles have created enormous expectations in the last few years for the use of such materials in areas such as medical diagnostics and drug-delivery, and in high-tech devices. By its very nature, nanotechnology is of immense academic and industrial interest as it involves the creation and exploitation of materials with structural features in between those of atoms and bulk materials, with at least one dimension limited to between 1 and 100 nm. Most importantly, the properties of materials with nanometric dimensions are, in most instances, significantly different from those of atoms or bulk materials. Research efforts geared towards new synthetic procedures for shape and size-uniform nanoscale building blocks as well as efficient self-assembly protocols for manipulation of these building blocks into functional materials has created enormous excitement in the field of liquid crystal research. Liquid crystals (LCs) by their very nature are suitable candidates for matrix-guided synthesis and self-assembly of nanoscale materials, since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level. Based on selected relevant examples, this review attempts to give a short overview of current research efforts in LC-nanoscience. The areas addressed in this review include the synthesis of nanomaterials using LCs as templates, the design of LC nanomaterials, self-assembly of nanomaterials using LC phases, defect formation in LC-nanoparticle suspensions, and potential applications. Despite the seeming diversity of these research topics, this review will make an effort to establish logical links between these different research areas.


defects liquid crystal liquid crystals nanochemistry nanoclusters nanomaterials nanoparticles self-assembly self-organization template synthesis 


  1. 1.
    B. Bhushan, ed. Handbook of Nanotechnology (Springer 2004)Google Scholar
  2. 2.
    G. Ozin and A. Arsenault, Nanochemistry—A Chemical Approach to Nanomaterials (Cambridge, RSC, 2005).Google Scholar
  3. 3.
    Cao G. (2004) Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press, LondonGoogle Scholar
  4. 4.
    Rao C. N. R., Kulkarni G. U., Thomas P. J., Edwards P. P. (2000) Chem. Soc. Rev. 29: 27Google Scholar
  5. 5.
    Sarikaya M., Tamerler C., Jen A. K.-Y., Schulten K., Baneyx F. (2003) Nat. Mater. 2: 577PubMedADSGoogle Scholar
  6. 6.
    G. Cao and C. J. Brinker, eds. Annual Report of Nano Research, Vol. 1 (World Scientific Publishing, 2006)Google Scholar
  7. 7.
    G. W. Gray, in Handbook of Liquid Crystals, Vol. 1, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, eds., (Wiley-VCH, Weinheim, 1998), pp. 1–16.Google Scholar
  8. 8.
    B. Bahadur, ed. Liquid Crystals-Application and Uses, Vol. 1–3, World Scientific, Singapore, 1990.Google Scholar
  9. 9.
    D. Demus, J. Goodby, G. W. Gray, H.W. Spiess, and V. Vill, eds., Handbook of Liquid Crystals, Vol. 1, (Wiley-VCH, Weinheim, 1998), pp. 731–896.Google Scholar
  10. 10.
    P. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, 1997)Google Scholar
  11. 11.
    Tschierske C. (1996) Prog. Polym. Sci. 21: 775Google Scholar
  12. 12.
    Tschierske C. (1998) J. Mater. Chem. 8: 1485Google Scholar
  13. 13.
    Tschierske C. (2001) Annu. Rep. Prog. Chem., Sect. C 97: 191Google Scholar
  14. 14.
    J. M. Seddon and R. H. Templer, In: Handbook of Biological Physics, Vol 1, R. Lipowsky and E. Sackmann, eds. (Elsevier, 1995), pp. 97Google Scholar
  15. 15.
    Demus D., Goodby J., Gray G. W., Spiess H. W., Vill V. (Eds) (1998) Handbook of Liquid Crystals, Vol 3. Wiley-VCH, Weinheim, pp 1–302Google Scholar
  16. 16.
    M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, 2003).Google Scholar
  17. 17.
    Xie P., Zhang R. (2005) J. Mater. Chem. 15: 2529MathSciNetGoogle Scholar
  18. 18.
    Barberá J., Donnio B., Gehringer L., Guillon D., Marcos M., Omenat A., Serrano J. L. (2005) J. Mater. Chem. 15: 4093Google Scholar
  19. 19.
    Saez I.M., Goodby J.W. (2005) J. Mater. Chem. 15: 26Google Scholar
  20. 20.
    Kato T. (2002) Science 295: 2414PubMedADSGoogle Scholar
  21. 21.
    Mesophases that are characterized by long range positional and no orientational ordering are referred to as disordered crystals or plastic crystals. See P. A. Winsor, Liquid Crystals & Plastic Crystals, G. W. Gray and P.A. Winsor, eds., Vol. 1, (Horwood, Chichester, 1974), pp. 48.Google Scholar
  22. 22.
    D. Demus, J. Goodby, G. W. Gray, H. W. Spiess and V. Vill, eds., Handbook of Liquid Crystals, Vol. 2a, chpt. III, (Wiley-VCH, Weinheim, 1998), pp. 47–302 and S. Chandrasekhar, Vol. 2b, pp. 749–780.Google Scholar
  23. 23.
    H. Coles, in Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, eds., Vol. 2a (Wiley-VCH, Weinheim, 1998), pp. 335–410Google Scholar
  24. 24.
    There exist several tilted and non-tilted smectic modifications, some of which are designated crystal phases, with a varying degree of in-plane ordering. For more details see ref [25]Google Scholar
  25. 25.
    G. W. Gray and J. W. Goodby, Smectic Liquid Crystals: Textures and Structures (Thompson Sci., 1984)Google Scholar
  26. 26.
    Higher ordered (tilted and non-tilted) smectic phases (and chiral versions thereof) have no equivalent in lyotropic LC phase morphologiesGoogle Scholar
  27. 27.
    Garoff S., Meyer R. B. (1977) Phys. Rev. Lett. 38: 848ADSGoogle Scholar
  28. 28.
    Garoff S., Meyer R. B. (1979) Phys. Rev. A 19: 338ADSGoogle Scholar
  29. 29.
    For an example of atropisomeric chiral dopants see: T. Hegmann, M. R. Meadows, M. D. Wand and R. P. Lemieux, J. Mater. Chem. 14, 185 (2004)Google Scholar
  30. 30.
    C. S. Hartley, N. Kapernaum, J. C. Roberts, F. Giesselmann and R. P. Lemieux, J. Mater. Chem. 16, 2329 (2006), and references thereinGoogle Scholar
  31. 31.
    W. Hall, J. Hollingshurst and J. W. Goodby, in Handbook of Liquid Crystal Research, P. J. Collings and J. S. Patel, eds. (Oxford University Press, New York, 1997)Google Scholar
  32. 32.
    Clark N. A., Lagerwall S. T. (1980) Appl. Phys. Lett. 36: 899ADSGoogle Scholar
  33. 33.
    D. M. Walba, in Advances in the Synthesis and Reactivity of Solids, T.E. Mallouck, ed. (JAI Press Ltd, Greenwich CT, 1991)Google Scholar
  34. 34.
    Lemieux R. P. (2001) Acc. Chem. Res. 34: 845PubMedGoogle Scholar
  35. 35.
    Goodby J. W. (2002) Curr. Opin. Coll. Interf. Sci. 7: 326Google Scholar
  36. 36.
    Chandrasekhar S., Ranganath G. S. (1990) Rep. Prog. Phys. 53: 57ADSGoogle Scholar
  37. 37.
    Kumar S. (2006) Chem. Soc. Rev. 35: 83PubMedGoogle Scholar
  38. 38.
    For an example see: T. Hegmann, B. Neumann, R. Wolf and C. Tschierske, J. Mater. Chem. 15, 1025 (2005), and references thereinGoogle Scholar
  39. 39.
    Serrano J. L. (1996) Metallomesogens. VCH, WeinheimGoogle Scholar
  40. 40.
    B. Donnio and D. W. Bruce, in Structure and Bonding 95: Liquid Crystals II, D. M. P. Mingos, ed. (Springer, Berlin, 1999) pp. 193Google Scholar
  41. 41.
    For an example of macrocyclic LCs see: T. Hegmann, J. Kain, S. Diele, B. Schubert, H. Bögel and C. Tschierske, J. Mater. Chem. 13:991 (2003)Google Scholar
  42. 42.
    Pegenau A., Hegmann T., Tschierske C., Diele S. (1999) Chem Eur. J. 5: 1643Google Scholar
  43. 43.
    Zheng H., Swager T. M. (1994) J. Am. Chem. Soc. 116: 761Google Scholar
  44. 44.
    X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey and J. K. Hobbs, Nature 428, 157 (2004) and references thereinGoogle Scholar
  45. 45.
    B. Chen, X. Zeng, U. Baumeister, G. Ungar and C. Tschierske, Science 307, 96 (2005) and references thereinGoogle Scholar
  46. 46.
    For a recent example see: B. Bilgin-Eran, C. Tschierske, S. Diele and U. Baumeister, J. Mater. Chem. 16, 1136 (2006)Google Scholar
  47. 47.
    For extensive work on fluorinated multi-block LCs and an extensive list of references describing the use of semi-fluorinated alkyl chains in LC design see: X. Cheng, M. Prehm, M. K. Das, J. Kain, U. Baumeister, S. Diele, D. Leine, A. Blume and C. Tschierske, J. Am. Chem. Soc. 125, 10977 (2003)Google Scholar
  48. 48.
    Niori T., Sekine T., Watanabe J., Furukawa T., Takezoe H. (1996) J. Mater. Chem. 6: 1231Google Scholar
  49. 49.
    Ros M. B., Serrano J. L., de la Fuente M. R., Folcia C. L. (2005) J. Mater. Chem. 15: 5093Google Scholar
  50. 50.
    Reddy R. A., Tschierske C. (2006) J. Mater. Chem. 16: 907Google Scholar
  51. 51.
    Coleman D. A., Fernsler J., Chattham N., Nakata M., Takanishi Y., Korblova E., Link D. R., Shao R.-F., Jang W. G., Maclennan J. E., Mondainn-Monval O., Boyer C., Weissflog W., Pelzl G., Chien L.-C., Zasadzinski J., Watanabe J., Walba D. M., Takezoe H., Clark N. A. (2003) Science 301: 1204PubMedADSGoogle Scholar
  52. 52.
    First demonstrated by: D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Körblova and D. M. Walba, Science 278, 1924 (1997)Google Scholar
  53. 53.
    Figueireedo Neto A. M., Salinas S. R. A. (2005) The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties. Oxford University Press, USAGoogle Scholar
  54. 54.
    Jana N. R., Gearheart L., Murphy C. J. (2001) Adv. Mater. 13: 1389Google Scholar
  55. 55.
    Jana N. R., Gearheart L. A., Obare S. O., Johnson C. J., Edler K. J., Mann S., Murphy C. J. (2002) J. Mater. Chem. 12: 2909Google Scholar
  56. 56.
    Johnson C. J., Dujardin E., Davis S. A., Murphy C. J., Mann S. (2002) J. Mater. Chem. 12: 1765Google Scholar
  57. 57.
    Busbee B. D., Obare S. O., Murphy C. J. (2003) Adv. Mater. 15: 414Google Scholar
  58. 58.
    Andersson M., Alfredsson V., Kjellin P., Palmqvist A. E. C. (2002) Nano Lett. 2: 1403Google Scholar
  59. 59.
    Some of these aspects have recently been discussed in a detailed review article. B. L. Cushing, V. L. Kolesnichenko and C. J. O’Connor, Chem. Rev. 104, 3893 (2004)Google Scholar
  60. 60.
    Daniel M. C., Astruc D. (2004) Chem. Rev. 104: 293PubMedGoogle Scholar
  61. 61.
    Sarathy K. V., Raina G., Yadav R. T., Kulkarni G. U., Rao C. N. R. (1997) J. Phys. Chem. B. 101: 9876Google Scholar
  62. 62.
    Choo H., Cutler E., Shon Y. S. (2003) Langmuir 19: 8555Google Scholar
  63. 63.
    Wang W., Efrima S., Regev O. (1998) Langmuir 14: 602Google Scholar
  64. 64.
    Zhao S. Y., Chen S. H., Li D. G., Yang X. G., Ma H. Y. (2004) Physica E. 23: 92ADSGoogle Scholar
  65. 65.
    Chen S., Yao H., Kimura K. (2001) Langmuir 17: 733Google Scholar
  66. 66.
    N. Kanyama, O. Tsutsumi, A. Kanazawa, T. Ikeda, Chem. Commun. 2640 (2001)Google Scholar
  67. 67.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. J. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994)Google Scholar
  68. 68.
    Badia A., Lennox R.B., Reven L. (2000) Acc. Chem. Res. 33: 475PubMedGoogle Scholar
  69. 69.
    Pasquato L., Pengo P., Scrimin P. (2004) J. Mater. Chem. 14: 3481Google Scholar
  70. 70.
    Ahmadi T. S., Wang Z. L., Green T. C., Henglein A., El-Sayed M. A. (1996) Science 272: 1924ADSGoogle Scholar
  71. 71.
    Petroski J. M., Wang Z. L., Green T. C., El-Sayed M. A. (1998) J. Phys. Chem. B 102: 3316Google Scholar
  72. 72.
    Bradley J. S., Tesche B., Bussner W., Maase M., Reetz M. T. (2000) J. Am. Chem. Soc. 122: 4631Google Scholar
  73. 73.
    (a) N. R. Jana, L. Gearheart, and C. J. Murphy, Chem. Commun. 617 (2001); (b) A. Cole and C. J. Murphy, Chem. Mater. 16, 3633 (2004).Google Scholar
  74. 74.
    Sertova N., Toulemonde M., Hegmann T. (2006) J. Inorg. Organomet. Polym. Mater. 16: 91Google Scholar
  75. 75.
    R. G. Laughlin, ed., Cationic Surfactants: Physical Chemistry, vol 2. (Marcell Dekker Inc., New York and Basel, 1991), pp. 1–40Google Scholar
  76. 76.
    Coppola L., Gianferri R., Nicotera I., Oliviero C., Ranieri G. A. (2004) Phys. Chem. Chem. Phys. 6: 2364Google Scholar
  77. 77.
    K. M. McGrath, Langmuir 11, 1835 (1995)Google Scholar
  78. 78.
    Liu Z., Hu Z., Xie Q., Yang B., Wu J., Qian Y. (2003) J. Mater. Chem. 13: 159Google Scholar
  79. 79.
    Gates B., Yin Y. D., Xia Y. N. (2000) J. Am. Chem. Soc. 122: 12582Google Scholar
  80. 80.
    Attard G. S., Glyde J. C., Göltner C. G. (1995) Nature 378: 366ADSGoogle Scholar
  81. 81.
    Attard G. S., Göltner C. G., Corker J. M., Henke S., Templer R. H. (1997) Angew. Chem. Int. Ed. 109: 1372Google Scholar
  82. 82.
    S. Polarz and M. Antonietti, Chem. Commun. 2593 (2002)Google Scholar
  83. 83.
    Landskron K., Ozin G. A. (2004) Science 306: 1529PubMedADSGoogle Scholar
  84. 84.
    Antonietti M., Ozin G. A. (2004) Chem. Eur. J. 10: 28Google Scholar
  85. 85.
    (a) P. Yang, D. Zhao, B. F. Margolese, B. F. Chmelka and G. D. Stucky, Chem. Mater. 11, 2813 (1999)Google Scholar
  86. 86.
    Schüth F. (2001) Chem. Mater. 13: 3184Google Scholar
  87. 87.
    Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. (1992) Nature 359: 710ADSGoogle Scholar
  88. 88.
    Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D. (1998) J. Am. Chem. Soc. 120: 6024Google Scholar
  89. 89.
    Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L. (1992) J. Am. Chem. Soc. 114: 10834Google Scholar
  90. 90.
    J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., Int. Ed. 38, 56 (1999), and references thereinGoogle Scholar
  91. 91.
    A. Thomas, H. Schlaad, B. Smarsly and M. Antonietti, Langmuir 19, 4455 (2003), and references thereinGoogle Scholar
  92. 92.
    Doshi D. A., Gibaud A., Goletto V., Lu M. C., Gerung H., Ocko B., Han S. M., Brinker C. J. (2003) J. Am. Chem. Soc. 125: 11646PubMedGoogle Scholar
  93. 93.
    Lyons D. M., Ryan K. M., Morris M. A. (2002) J. Mater. Chem. 12: 1207Google Scholar
  94. 94.
    Huang N. M., Kan C. S., Radiman S. (2003) Appl. Phys. A 76: 555ADSGoogle Scholar
  95. 95.
    Yamauchi Y., Yokoshima T., Momma T., Osaka T., Kuroda K. (2004) J. Mater. Chem. 14: 2935Google Scholar
  96. 96.
    Bartlett P. N., Birkin P. N., Ghanem M. A., de Groot P., Sawicki M. (2001) J. Electrochem. Soc. 148: C119Google Scholar
  97. 97.
    Bartlett P. N., Gollas B., Guerin S., Marwan J. (2002) Phys. Chem. Chem. Phys. 4: 3835Google Scholar
  98. 98.
    Nelson P. A., Elliott J. M., Attard G. S., Owen J. R. (2002) Chem. Mater. 14: 524Google Scholar
  99. 99.
    Bartlett P. N., Marwan J. (2003) Micropor. Mesopor. Mater. 62: 73Google Scholar
  100. 100.
    Nandhakumar I. S., Elliott J. M., Attard G. S. (2001) Chem. Mater. 13: 3840Google Scholar
  101. 101.
    Gabriel T., Nandhakumar I. S., Attard G. S. (2002) Electrochem. Commun. 4: 610Google Scholar
  102. 102.
    A. H. Whitehead, J. M. Elliott, J. R. Owen and G. S. Attard, Chem. Commun. 331 (1999)Google Scholar
  103. 103.
    Bender F., Mankelow R. K., Hibbert B., Gooding J. (2006) Electroanalysis 18: 1558Google Scholar
  104. 104.
    Ding J. H., Gin D. L. (2000) Chem. Mater. 12: 22Google Scholar
  105. 105.
    For a review of nanoparticles in micro-phase separated block-copolymers see: A. Haryono and W. H. Binder, Small 2, 600 (2006)Google Scholar
  106. 106.
    Dellinger T. M., Braun P. V. (2001) Scripta Mater. 44: 1893Google Scholar
  107. 107.
    Patakfalvi R., Dékány I. (2002) Colloid. Polym. Sci. 280: 461Google Scholar
  108. 108.
    Dellinger T. M., Braun P. V. (2004) Chem. Mater. 16: 2201Google Scholar
  109. 109.
    Zhang G., Chen X., Zhao J., Chai Y., Zhuang W., Wang L. (2006) Mater. Lett. 60: 2889Google Scholar
  110. 110.
    Smith R. C., Fischer W. M., Gin D. L. (1997) J. Am. Chem. Soc. 119: 4092Google Scholar
  111. 111.
    Karanikolos G. N., Alexandridis P., Mallory R., Petrou A., Mountziaris T. J. (2006) Nanotechnology 16: 3121ADSGoogle Scholar
  112. 112.
    Karanikolos G. N., Law N.-L., Mallory R., Petrou A., Alexandridis P., Mountziaris T. J. (2005) Nanotechnology 17: 2372ADSGoogle Scholar
  113. 113.
    O’Connor C. J., Seip C. T., Carpenter E. E., Li S., John V. T. (1999) Nanostruct. Mater. 12: 65Google Scholar
  114. 114.
    Huang L. M., Wang H. T., Wang Z. B., Mitra A., Bozhilov K. N., Yan Y. S. (2002) Adv. Mater. 14: 61Google Scholar
  115. 115.
    Gi L., Gao Y., Ma J. (1999) Colloids Surf. A 157: 285Google Scholar
  116. 116.
    Jiang X., Xie Y., Lu J., Zhu L., He W., Qian Y. (2001) J. Mater. Chem. 11: 1775Google Scholar
  117. 117.
    Wang L., Chen X., Zhao J., Sui Z., Zhuang W., Xu L., Yang C. (2005) Colloids Surf. A 257–258: 231Google Scholar
  118. 118.
    Jiang X., Xie Y., Lu J., Zhu L., He W., Qian Y. (2001) Chem. Mater. 13: 1213Google Scholar
  119. 119.
    Daniels S., Christian P., O’Brien P. (2006) J. Exp. Nanosci. 1: 97Google Scholar
  120. 120.
    Pileni M. P., Ninham B. W., Gulik-Krzywicki T., Tanori J., Lisiecki I., Filankembo A. (1999) Adv. Mater. 11: 1358Google Scholar
  121. 121.
    Rees G. D., Evans-Gowing R., Hammond S. J., Robinson B. H. (1999) Langmuir 15: 1993Google Scholar
  122. 122.
    Qi L., Ma J., Cheng H., Zhao Z. (1997) J. Phys. Chem. B 101: 3460Google Scholar
  123. 123.
    Hopwood J. D., Mann S. (1997) Chem. Mater. 8: 1819Google Scholar
  124. 124.
    Yang H. M., Yang M., Zhang Y., Chen G. X. (2004) Colloid J. 66: 708Google Scholar
  125. 125.
    Agnoli F., Zhou W. L., O’Connor C. (2001) Adv. Mater. 13: 1697Google Scholar
  126. 126.
    Carpenter E. E. (2001) J. Magn. Magn. Mater. 225: 17ADSGoogle Scholar
  127. 127.
    See for example: T. Hegmann, J. Kain, S. Diele, G. Pelzl and C. Tschierske, Angew. Chem. Int. Ed. 40, 887 (2001), and references thereinGoogle Scholar
  128. 128.
    McCormick D. T., Fordham Z. W., Guymon C. A. (2003) Liq. Cryst. 30: 49Google Scholar
  129. 129.
    McCormick D. T., Chavers R., Guymon C. A. (2001) Macromolecules 34: 6929Google Scholar
  130. 130.
    Guymon C. A., Dougan L. A., Martens P. J., Clark N. A., Walba D. M., Bowman C. N. (1998) Chem. Mater. 10: 2378Google Scholar
  131. 131.
    Taubert A. (2004) Angew. Chem., Int. Ed. 43: 5380Google Scholar
  132. 132.
    Dobbs W., Suisse J.-M., Douce L., Welter R. (2006) Angew. Chem., Int. Ed. 45: 4179Google Scholar
  133. 133.
    G. Lattermann, L. Torre Lorente, M. Grudzev, M. Krekhova and N. V. Usoltseva, 21st International Liquid Crystal Conference, Keystone (CO) (Book of Abstracts, 2006). Pp. 218Google Scholar
  134. 134.
    Kim Y.-G., Oh S.-K., Crooks R. M. (2004) Chem. Mater. 16: 167Google Scholar
  135. 135.
    Fendler J. H., Meldrum F. C. (1995) Adv. Mater. 7: 607Google Scholar
  136. 136.
    Templeton A. C., Wuelfing W. P., Murray R. W. (2000) Acc. Chem. Res. 33: 27PubMedGoogle Scholar
  137. 137.
    For an example see: N. Perez, M. J. Whitcombe and E. N. Vulfson, J. Appl. Polym. Sci. 77, 1851 (2000)Google Scholar
  138. 138.
    Swami A., Selvakannan P. R., Pasricha R., Sastry M. (2004) J. Phys. Chem. B 108: 19269Google Scholar
  139. 139.
    Sastry M. (2004) In: Caruso F. (Ed) Colloids and Colloid Assemblies. Wiley-VCH, Weinheim, pp 369–397Google Scholar
  140. 140.
    Fukuto M., Heilmann R. K., Pershan P. S., Badia A., Lennox R. B. (2004) J. Chem. Phys. 120: 3446PubMedADSGoogle Scholar
  141. 141.
    Ferreira M., Zucolotto V., Ferreira M., Oliveira O. N. Jr., Wohnrath K. (2004) Encyclopedia Nanosci. Nanotechnol. 4: 441Google Scholar
  142. 142.
    Bertoncello P., Notargiacomo A., Nicolini C. (2005) Langmuir 21: 172PubMedGoogle Scholar
  143. 143.
    Zhou X., Liu C., Zhang Z., Jiang L., Li J. (2005) Coll J. Interf. Sci. 284: 354Google Scholar
  144. 144.
    For a review see: R. Shenhar, T. B. Norsten and V. M. Rotello, Adv. Mater. 17, 657 (2005)Google Scholar
  145. 145.
    Elghanian R., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A. (1997) Science 277: 1078PubMedGoogle Scholar
  146. 146.
    Shenton W., Davis S. A., Mann S. (1999) Adv. Mater. 11: 449Google Scholar
  147. 147.
    Mann S., Shenton W., Li M., Connolly S., Fritzmaurice D. (2000) Adv. Mater. 12: 147Google Scholar
  148. 148.
    Niemeyer C. M. (2001) Angew. Chem., Int. Ed. 40: 4254Google Scholar
  149. 149.
    Rosi N. L., Thaxton C. S., Mirkin C. A. (2004) Angew. Chem., Int. Ed. 43: 5500Google Scholar
  150. 150.
    N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005), and references thereinGoogle Scholar
  151. 151.
    Chung S. W., Ginger D. S., Morales M. W., Zhang Z. F., Chandrasekhar V., Ratner M. A., Mirkin C. A. (2005) Small 1: 64PubMedGoogle Scholar
  152. 152.
    For a review see: U. Drechsler, B. Erdogan and V. M. Rotello, Chem. Eur. J. 10, 5570 (2004)Google Scholar
  153. 153.
    Related examples of inorganic lyotropic liquid crystals were summarized in a review paper: A. S. Sonin, J. Mater. Chem. 8, 2557 (1998)Google Scholar
  154. 154.
    Saunders A. E., Ghezelbash A., Smilgies D.-M., Sigman Jr. M. B., Korgel B. A. (2006) Nano Lett. 6: 2959PubMedGoogle Scholar
  155. 155.
    Li L.-S., Walda J., Manna L., Alivisatos A. P. (2002) Nano Lett. 2: 557Google Scholar
  156. 156.
    Li L.-S., Alivisatos A. P. (2003) Adv. Mater. 15: 408Google Scholar
  157. 157.
    Li L.-S., Marjanska M., Park G. H. J., Pines A., Alivisatos A. P. (2004) J. Chem. Phys. 120: 1149PubMedADSGoogle Scholar
  158. 158.
    Kim F., Kwan S., Akana J., Yang P. (2001) J. Am. Chem. Soc. 123: 4360PubMedGoogle Scholar
  159. 159.
    Talapin C. V., Shevchenko E. V., Murray C. B., Kornowski A., Forster S., Weller H. (2004) J. Am. Chem. Soc. 126: 12984PubMedGoogle Scholar
  160. 160.
    Korgel B. A., Fitzmaurice D. (1998) Adv. Mater. 10: 661Google Scholar
  161. 161.
    Li M., Schnablegger H., Mann S. (1999) Nature 402: 393ADSGoogle Scholar
  162. 162.
    Nikoobakht B., Wang Z. L., El-Sayed M. A. (2000) J. Phys. Chem. B 104: 8635Google Scholar
  163. 163.
    Sau T. K., Murphy C. J. (2005) Langmuir 21: 2923PubMedGoogle Scholar
  164. 164.
    Janan N. R. (2004) Angew. Chem., Int. Ed. 43: 1536Google Scholar
  165. 165.
    Dumestre F., Chaudret B., Amiens C.,Respaud M., Fejes P., Renaud P., Zurcher P. (2003) Angew. Chem., Int. Ed. 42: 5213Google Scholar
  166. 166.
    Veerman J. A. C., Frenkel D. (1992) Phys. Rev. A 45: 5632ADSGoogle Scholar
  167. 167.
    Zhang S. D., Reynolds P. A., van Dujneveldt J. S. (2002) J. Chem. Phys. 117: 9947ADSGoogle Scholar
  168. 168.
    Brown A. B. D., Clarke S. M., Rennie A. R. (1998) Langmuir 14: 3129Google Scholar
  169. 169.
    Van der Kooij F. M., Lekkerkerker H. N. W. (1998) J. Phys. Chem. B 102: 7829Google Scholar
  170. 170.
    Van der Kooij F. M., Kassapidou K., Lekkerkerker H. N. W. (2000) Nature 406: 868ADSGoogle Scholar
  171. 171.
    Davidson P., Gabriel J.-C. P. (2005) Curr. Opin. Coll. Interf. Sci. 9: 377Google Scholar
  172. 172.
    Gabriel J.-C. P., Camerel F., Lemaire B. J., Desvaux H., Davidson P., Batail P. (2001) Nature 413: 504PubMedADSGoogle Scholar
  173. 173.
    Puntes V. F., Zanchet D., Erdonmez C. K., Alivisatos A. P. (2002) J. Am. Chem. Soc. 124: 12874PubMedGoogle Scholar
  174. 174.
    Sigman M. B., Ghezelbash A., Hanrath T., Saunders A. E., Lee F., Korgel B. A. (2003) J. Am. Chem. Soc. 125: 16050PubMedGoogle Scholar
  175. 175.
    Zhang Y.-W., Sun X., Si R., You L.-P., Yan C.-H. (2005) J. Am. Chem. Soc. 127: 3260PubMedGoogle Scholar
  176. 176.
    Ghezelbash A., Korgel B. A. (2005) Langmuir 21: 9451PubMedGoogle Scholar
  177. 177.
    Park K. H., Jang K., Son S. U. (2006) Angew. Chem., Int. Ed. 45: 4608Google Scholar
  178. 178.
    N. Kanayama, O. Tsutsumi, A. Kanazawa and T. Ikeda Chem. Commun. 2640 (2001)Google Scholar
  179. 179.
    I. In, Y.-W. Jun, Y. J. Kim and S. Y. Kim, Chem. Commun. 800 (2005)Google Scholar
  180. 180.
    Gascon I., Marty J. D., Gharsa T., Mingotaud C. (2005) Chem. Mater. 17: 5228Google Scholar
  181. 181.
    Cseh L., Mehl G. H. (2006) J. Am. Chem. Soc. 128: 13376PubMedGoogle Scholar
  182. 182.
    Cseh L., Mehl G. H. (2007) J. Mater. Chem. 17: 311Google Scholar
  183. 183.
    Büttner M., Belser T., Oelhafen P. (2005) J. Phys. Chem. B 109: 5464PubMedGoogle Scholar
  184. 184.
    Maye M. M., Zheng W., Leibowitz F. L., Ly N. K., Zhong C. (2000) Langmuir 16: 490Google Scholar
  185. 185.
    Chen Y., Palmer R. E., Wilcoxon J. P. (2006) Langmuir 22: 2851PubMedGoogle Scholar
  186. 186.
    Kanie K., Sugimoto T. (2003) J. Am. Chem. Soc. 125: 10518PubMedGoogle Scholar
  187. 187.
    Kanie K., Muramatsu M. (2005) J. Am. Chem. Soc. 127: 11578PubMedGoogle Scholar
  188. 188.
    K. Kanie, S. Hatayama and A. Muramatsu, 21st International Liquid Crystal Conference, Keystone (CO) (Book of Abstracts, 2006), pp. 259Google Scholar
  189. 189.
    Mougous J., Baker R., Patrick D. L. (2000) Phys. Rev. Lett. 84: 2742ADSGoogle Scholar
  190. 190.
    Patrick D. L., Wilkinson F. S., Fegurgur T. L. (2005) Proc. SPIE 5936: 5936AGoogle Scholar
  191. 191.
    Lapointe C., Hultgren A., Silevitch D. M., Felton E. J., Reich D. H., Leheny R. L. (2004) Science 303: 652PubMedADSGoogle Scholar
  192. 192.
    Lapointe C., Cappallo N., Reich D. H., Leheny R. L. (2005) J. Appl. Phys. 97: 10Q304Google Scholar
  193. 193.
    Dierking I., Scalia G., Morales P., LeClere D. (2004) Adv. Mater. 16: 865Google Scholar
  194. 194.
    Dierking I., Scalia G., Morales P. (2005) J. Appl. Phys. 97: 044309Google Scholar
  195. 195.
    Duran H., Gazdecki B., Yamashita A., Kyu T. (2005) Liq. Cryst. 32: 815Google Scholar
  196. 196.
    Courty S., Mine J., Tajbakhsh A. R., Terentjev E. M. (2003) Europhys. Lett. 64: 654ADSGoogle Scholar
  197. 197.
    Lynch M. D., Patrick D. L. (2004) Chem. Mater. 16: 762Google Scholar
  198. 198.
    Lynch M. D., Patrick D. L. (2002) Nano Lett. 2: 1197Google Scholar
  199. 199.
    Sousa M. E., Cloutier S. G., Jian K. Q., Weissman B. S., Hurt R. H., Crawford G. P. (2005) Appl. Phys. Lett. 87: 173115ADSGoogle Scholar
  200. 200.
    G. P. Crawford and R. H. Hurt, in H. S. Nalwa, ed. Encyclopaedia of Nanoscience and Nanotechnology, vol 10 (American Scientific Publishers, 2003), pp. 1–27Google Scholar
  201. 201.
    Chan C., Crawford G., Gao Y., Hurt R., Jian K., Li H., Sheldon B., Sousa M., Yang N. (2005) Carbon 43: 2431Google Scholar
  202. 202.
    Hung F. R., O. Guzmán, Gettelfinger B. T., Abbott N. L., J. J. de Pablo (2006) Phys. Rev. E 74: 011711ADSGoogle Scholar
  203. 203.
    Brochard F., P. G. de Gennes (1970) J. de Physique 31: 691Google Scholar
  204. 204.
    Zapotocky M., Ramos L., Poulin P., Lubensky T.C., Weitz D. A. (1999) Science 283: 209Google Scholar
  205. 205.
    Stark H. (2001) Phys. Rep. 351: 387ADSGoogle Scholar
  206. 206.
    Mitov M., Portet C., Bourgerette C., Snoeck E., Verelst M. (2002) Nat. Mater. 1: 229PubMedADSGoogle Scholar
  207. 207.
    Mitov M., Bourgerette C., F. de Guerville (2004) J. Phys. Condens. Matter 16: 1981Google Scholar
  208. 208.
    Poulin P., Stark H., Lubensky T. C., Weitz D. A. (1997) Science 275: 1770Google Scholar
  209. 209.
    Kuksenok O. V., Rudwandl R. W., Shiyanovskii S. V., Terentjev E. M. (1996) Phys. Rev. E 54: 5198ADSGoogle Scholar
  210. 210.
    Ruhwandl R. W., Terentjev E. M. (1997) Phys. Rev. E 56: 5561ADSGoogle Scholar
  211. 211.
    Lubensky T. C., Pettey D., Currier N., Stark H. (1998) Phys. Rev. E 57: 610ADSGoogle Scholar
  212. 212.
    Stark H. (1999) Eur. Phys. J. B 10: 311ADSGoogle Scholar
  213. 213.
    Stark H., Stelzer J., Bernhard R. (1999) Eur. Phys. J. B 10: 515ADSGoogle Scholar
  214. 214.
    Andrienko D., Germano G., Allen M. P. (2001) Phys. Rev. E 63: 041701ADSGoogle Scholar
  215. 215.
    Lev B. I., Chernyshuk S. B., Tomchuck P. M., Yokoyama H. (2002) Phys. Rev. E 65: 021709ADSGoogle Scholar
  216. 216.
    Poulin P., Weitz D. A. (1998) Phys. Rev. E 57: 626ADSGoogle Scholar
  217. 217.
    O. Mondain-Monval, Dedieu J. C., T. Gulik-Krzywicki, Poulin P. (1999) Eur. Phys. J. B 12: 167ADSGoogle Scholar
  218. 218.
    Poulin P., Cabuil V., Weitz D. A. (1997) Phys. Rev. Lett. 79: 4862ADSGoogle Scholar
  219. 219.
    Gu Y. D., Abbott N. L. (2000) Phys. Rev. Lett. 85: 4719ADSGoogle Scholar
  220. 220.
    J.-C. Loudet, Barois P., Poulin P. (2000) Nature 407: 611ADSGoogle Scholar
  221. 221.
    J.-C. Loudet, Poulin P., Barois P. (2001) Europhys. Lett. 54: 175ADSGoogle Scholar
  222. 222.
    J.-C. Loudet, Poulin P. (2001) Phys. Rev. Lett. 87: 165503PubMedADSGoogle Scholar
  223. 223.
    J.-C. Loudet O. Mondain-Monval, Poulin P. (2002) Eur. Phys. J. E 7: 205Google Scholar
  224. 224.
    Poulin P., N. France`s O. Mondain-Monval (1999) Phys. Rev. E 59: 4384ADSGoogle Scholar
  225. 225.
    Fukuda J., Yokoyama H., Yoneya M., Stark H. (2005) Mol. Cryst. Liq. Cryst. 435: 723Google Scholar
  226. 226.
    Stark H. (2002) Phys. Rev. E 66: 032701ADSGoogle Scholar
  227. 227.
    Feng J. J., Zhou C. (2004) J. Colloid Interface Sci. 269: 72PubMedGoogle Scholar
  228. 228.
    Svetec M., Kralj S., Z. Bradač S. Žumer (2006) Eur. Phys. J. E 20: 71PubMedGoogle Scholar
  229. 229.
    Kossyrev P., Ravnik M., S. Žumer (2006) Phys. Rev. Lett. 96: 048301PubMedADSGoogle Scholar
  230. 230.
    Tian P., Smith G. D., Glaser M. (2006) J. Chem. Phys. 124: 161101PubMedADSGoogle Scholar
  231. 231.
    Qi H., Hegmann T. (2006) J. Mater. Chem. 16: 4197Google Scholar
  232. 232.
    O. Guzmán, Abbott N. L., J. J. de Pablo (2005) J. Chem. Phys. 122: 184711PubMedADSGoogle Scholar
  233. 233.
    H. Qi, A. Lepp, P. A. Heiney, and T. Hegmann, J. Mater. Chem. DOI:10.1039/b701411b (2007).Google Scholar
  234. 234.
    Nazarenko V. G., Nych A. B., Lev B. I. (2001) Phys. Rev. Lett. 87: 075504PubMedADSGoogle Scholar
  235. 235.
    Smalyukh I. I., Chernyshuk S., Lev B. I., Nych A. B., Ognysta U., Nazarenko V. G., Lavrentovich O. D. (2004) Phys. Rev. Lett. 93: 117801PubMedADSGoogle Scholar
  236. 236.
    Petrov P. G., Terentjev E. M. (2001) Langmuir 17: 2942Google Scholar
  237. 237.
    Anderson V. J., Terentjev E. M., Meeker S. P., Crain J., Poon W. C. K. (2001) Euro. Phys. J. E 4: 11Google Scholar
  238. 238.
    Anderson V. J., Terentjev E. M., Meeker S. P., Crain J., Poon W. C. K. (2001) Euro. Phys. J. E 4: 21Google Scholar
  239. 239.
    Cleaver J., Poon W. C. K. (2004) J. Phys.: Condens. Matter 16: S1901Google Scholar
  240. 240.
    Vollmer D., Hinze G., Ullrich B., Poon W. C. K., Cates M. E., Schofield A. B. (2005) Langmuir 21: 4921PubMedGoogle Scholar
  241. 241.
    Jeu W. H., Eidenschink R. (1991) Electron. Lett. 27: 1195Google Scholar
  242. 242.
    Kreuzer M., Tschudi T., Eidenschink R. (1992) Mol. Cryst. Liq. Cryst. 223: 219Google Scholar
  243. 243.
    Glushchenko A., Kresse H., Reshetnyak V., Reznikov Y., Yaroshchuk O. V. (1997) Liq. Cryst. 23: 753CrossRefGoogle Scholar
  244. 244.
    Diorio N. J. Jr., Fisch M. R., West J. W. (2002) Liq. Cryst. 29: 589Google Scholar
  245. 245.
    Boxtel M., Janssen R., Broer D., Wilderbeek H., Bastiaansen C. (2000) Adv. Mater. 12: 753Google Scholar
  246. 246.
    Boxtel M., Janssen R., Bastiaansen C., Broer D. (2001) J. Appl. Phys. 89: 838ADSGoogle Scholar
  247. 247.
    Freedericksz V., Tsvetkov V. (1934) Phys. Z. Sov. Union 6: 490Google Scholar
  248. 248.
    Puchkovskaya G., Reznikov Y., Yakubov A., Yaroshchuk O. V., Glushchenko A. (1996) J. Mol. Struct. 381: 133Google Scholar
  249. 249.
    Nersisyan S. R., Tabiryan N. V. (2006) Appl. Phys. Lett. 88: 151106Google Scholar
  250. 250.
    Dolgov L. O., Yaroshchuk O. V. (2004) Colloid Polym. Sci. 282: 1403Google Scholar
  251. 251.
    J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, Klar T. A., Feldmann J. (2002) Appl. Phys. Lett. 81: 171ADSGoogle Scholar
  252. 252.
    Park S. Y., Stroud D. (2005) Phys. Rev. Lett. 94: 217401PubMedADSGoogle Scholar
  253. 253.
    Kossyrev P. A., Yin A., Cloutier S. G., Cardimona D. A., Danhong H., Alsing P. M., Xu J. M. (2005) Nano Lett. 5: 1978PubMedGoogle Scholar
  254. 254.
    Bezrodna T., Chashechnikova I., Dolgov L., Puchkovska G., Ye. Shaydyuk, Lebovska N., Moraru V., Baran J., Ratajczak H. (2005) Liq. Cryst. 32: 1005Google Scholar
  255. 255.
    Sikharulidze D. (2005) Appl. Phys. Lett. 86: 033507Google Scholar
  256. 256.
    Williams Y., Chan K., Park J. H., Khoo I. C., Lewis B., Mallouk T. E. (2005) Proc. SPIE 5936: 225ADSGoogle Scholar
  257. 257.
    Yu V. Reshetnyak, Shelestiuk S. M., Sluckin T. J. (2006) Mol. Cryst. Liq. Cryst. 454: 201Google Scholar
  258. 258.
    Sono S., Miyama T., Takatoh K., Kobayashi S. (2006) Proc. SPIE 6135: 1ADSGoogle Scholar
  259. 259.
    Busch K., John S. (1999) Phys. Rev. Lett. 83: 967ADSGoogle Scholar
  260. 260.
    K. Daeseung, J. E. Maclennan, N. A. Clark, A. A. Zakhidov and R. H. Baughman, Phys. Rev. Lett. 86, 4052 (2001), and references thereinGoogle Scholar
  261. 261.
    Jákli A., L. Almásy S. Borbély, Rosta L. (1999) Eur. Phys. J. B 10: 509ADSGoogle Scholar
  262. 262.
    Fabre P., Casagrande C., Veyssie M. (1990) Phys. Rev. Lett. 64: 539ADSGoogle Scholar
  263. 263.
    Ponsinet V., Fabre P., Veyssie M., Auvray L. (1993) J. Phys. II 3: 1021Google Scholar
  264. 264.
    Potočová I., Kopčcansky P., M. Koneracká L. Tumčo, Jadzin J., Czechowski G. (2002) J. Magn. Magn. Mater. 252: 150ADSGoogle Scholar
  265. 265.
    Martinez-Miranda L. J., McCarthy K., Kurihara L. K., Harry J. J., Noel A. (2006) Appl. Phys. Lett. 89: 161917ADSGoogle Scholar
  266. 266.
    Matsui E., Yasuda A. (1997) Phys. Rev. E 56: 600ADSGoogle Scholar
  267. 267.
    Pecinovsky C. S., Nicodemus G. D., Gin D. L. (2005) Chem. Mater. 17: 4889Google Scholar
  268. 268.
    Bruce D. W., Goodby J. W., Sambles J. R., Coles H. J. (2006) Phil. Trans. R. Soc. A 364: 2567PubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ManitobaWinnipegCanada

Personalised recommendations