In Vitro and In Vivo Characterization of Biodegradable Poly(organophosphazenes) for Biomedical Applications

  • Sangamesh G. Kumbar
  • Subhabrata Bhattacharyya
  • Syam Prasad Nukavarapu
  • Yusuf M. Khan
  • Lakshmi S. Nair
  • Cato T. Laurencin
Article

Abstract

The need and the growing interest in polymers as biomaterials have led to the synthesis of new polymers with a variety of physico-chemical properties. Biomedical application of such materials not only depends on their physical properties but also on biocompatibility and biodegradability. Polyphosphazenes are a family of ‘hybrid inorganic–organic polymers’ with inorganic elements in the backbone and organic side-groups. The polyphosphazenes constitute a family of greatly diverse performance materials with a broad spectrum of properties. The present review focuses on the biodegradable polyphosphazenes, their biocompatibility, and degradation behavior both in vitro and in vivo. This review also covers the use of biodegradable polyphosphazenes as controlled release devices.

Keywords

Polyphosphazene biodegradable biocompatible polymer blends stimuli responsive drug delivery 

References

  1. 1.
    B. D. Ratner, S. J. Bryant, (2004) Annu. Rev. Biomed. Eng. 6: 41CrossRefGoogle Scholar
  2. 2.
    E. Schacht, J. Vandorpe, S. Dejardin, Y. Lemmouchi, L. Seymour, Biotech. Bioeng. 52, 102 (1996)CrossRefGoogle Scholar
  3. 3.
    S. Cohen, M. C. Bano, L. G. Cima, H. R. Allcock, J. P. Vacanti, C. A. Vacanti, R. Langer, Clin. Mater. 13: 3 (1993)CrossRefGoogle Scholar
  4. 4.
    M. Heyde and E. Schacht, in Applicative Aspects of Poly(organophosphazenes), R. D. Jaeger and M. Gleria, eds. (Nova Publishers, New York, 2004), pp. 1–32Google Scholar
  5. 5.
    S. J. Huang, in Handbook of Polymer Synthesis, 2nd edition. H. R. Kricheldorf, O. Nuyken, and G. Swift, eds. (CRC Press, Florida, 2005), pp. 881–893Google Scholar
  6. 6.
    C. T. Laurencin and A. M. A. Ambrosio, in Biodegradable Polymers, Vol. 2, R. Arshady, eds. (PBM Series, London, 2003), pp.153–173Google Scholar
  7. 7.
    M. V Chaubal, A. S. Gupta, S. T. Lopina, D. F. Bruley, Crit. Rev. Therap. Drug Carrier Syst. 20, 295 (2003)CrossRefGoogle Scholar
  8. 8.
    D. S. Katti and C. T. Laurencin, in Advanced Polymeric Materials, G. O. Shonaike and S. G. Advani, eds. (CRC Press, Florida, 2003), pp. 479–525Google Scholar
  9. 9.
    P. A. Gunatillake, R. Adhikari, Eur. Cells Mater. 5, 1 (2003)Google Scholar
  10. 10.
    K. Y. Lee, D. J. Mooney, Chem. Rev. 101, 1869 (2001)CrossRefGoogle Scholar
  11. 11.
    S. J. Huang, in Comprehensive Polymer Science, G. Allen and J. C. Bevington, eds. (Pergamon Press, Oxford, 1989), Chapter 21Google Scholar
  12. 12.
    P. Jarrett, W. J. Cook, J. P. Bell, S. J. Huang, J. A. Cameron, Polym. Preprints 22, 351 (1981)Google Scholar
  13. 13.
    S. J. Huang, Encycl. Polym. Sci. Eng. 2, 220 (1985)Google Scholar
  14. 14.
    J. Kopecek, Prog. Polym. Sci. 9, 1 (1983)CrossRefGoogle Scholar
  15. 15.
    D. F. Williams, Clin. Mater. 10, 9 (1992). CrossRefGoogle Scholar
  16. 16.
    P. A. Gunatillake, R. Adhikari, Eur. Cells Mater. 5, 1 (2003). Google Scholar
  17. 17.
    U. S. Absorbable and Erodible Biomaterials Products Markets, Frost & Sullivan Report (Frost & Sullivan, Mountain View, CA, 1995), chap 10Google Scholar
  18. 18.
    J. P. Vacanti and Robert Langer, in Synthetic Biodegradable Polymer Scaffolds, A. Atala and D. J. Mooney Asso. eds. (Springer, Boston, Birkhäuser, 1997)Google Scholar
  19. 19.
    M. Schlechter, Business Communications Company Market Study – (2005) http://www.biz-lib.com/ZBUP175.html Google Scholar
  20. 20.
    M. S. Taylor, A. U. Daniels, K. P. Andriano, J. Heller, J. Appl. Biomat. 5, 151 (1994)CrossRefGoogle Scholar
  21. 21.
    O. M. Bostman, H. K. Pihlajamaki, J. Bone Joint Surg. Am. 80, 1791 (1998) CrossRefGoogle Scholar
  22. 22.
    H. R. Allcock, Academic Press, New York, N.Y. 1972. Google Scholar
  23. 23.
    H. R. Allcock, Chem. Rev. 72, 315 (1972). CrossRefGoogle Scholar
  24. 24.
    H. R. Allcock, Wiley Interscience, New Jersey, N.J. 2004. Google Scholar
  25. 25.
    L. S. Nair, D. A. Lee, and C. T. Laurencin, in Handbook of Biodegradable Polymeric Materials and Their Applications, S. Mallapragada, B. Narasimhan, eds. (American Scientific Publishers, California, CA, 2005)Google Scholar
  26. 26.
    S. Lakshmi, D. S. Katti, C. T. Laurencin Adv. Drug Deliv. Rev. 55, 467 (2003)CrossRefGoogle Scholar
  27. 27.
    A. Singh, N. R. Krogman, S. Sethuraman, L. S. Nair, J. L. Sturgeon, P. W. Brown, C. T. Laurencin, H. R. Allcock, Biomacromolecules, 7, 914 (2006)CrossRefGoogle Scholar
  28. 28.
    H. R. Allcock, J. Fuller, D. P. Mack, K. Matsumura, K. M. Smeltz, Macromolecules 10, 824 (1977) CrossRefGoogle Scholar
  29. 29.
    H. R. Allcock, S. R. Pucher, A. G. Scopelianos, Macromolecules, 27, 1071 (1994). CrossRefGoogle Scholar
  30. 30.
    A. Singh, N. Krogman, S. Sethuraman, L. S. Nair, J. L Sturgeon, P. W. Brown, C. T. Laurencin, and H. R. Allcock, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, POLY-340 (2005)Google Scholar
  31. 31.
    A. K. Andrianov, A. Marin, Biomacromolecules, 7, 1581(2006)CrossRefGoogle Scholar
  32. 32.
    L. Y. Qiu, K. J. Zhu, J. Appl. Polym. Sci. 77, 2987 (2000)CrossRefGoogle Scholar
  33. 33.
    J. H. Crommen, E. H. Schacht, E. H. Mense, Biomaterials, 13, 511 (1992). CrossRefGoogle Scholar
  34. 34.
    J. H. Crommen, E. H. Schacht, E. H. Mense, Biomaterials, 13, 601 (1992). CrossRefGoogle Scholar
  35. 35.
    A. K. Andrianov, A. Marin, P. Peterson, Macromolecules, 38, 7972 (2005). CrossRefGoogle Scholar
  36. 36.
    H. R. Allcock, S. R. Pucher, Macromolecules, 24, 23 (1991). CrossRefGoogle Scholar
  37. 37.
    H. R. Allcock, T. J. Fuller, Macromolecules, 13, 1338 (1980). CrossRefGoogle Scholar
  38. 38.
    J. Crommen, J. Vandorpe, E. Schacht, J. Control. Rel. 24, 167 (1993). CrossRefGoogle Scholar
  39. 39.
    W. Yuan, Q. Song, L. Zhu, X. Huang, S. Zheng, X. Tang, Polym. Int. 54, 1262 (2005)CrossRefGoogle Scholar
  40. 40.
    Y. Cui, X. Zhao, X. Tang, Y. Luo, Biomaterials 25, 451 (2004) CrossRefGoogle Scholar
  41. 41.
    L. S. Nair, D. A. Lee, J. D. Bender, E. W. Barrett, Y. E. Greish, P. W. Brown, H. R. Allcock, C.T. Laurencin, J. Biomed. Mater. Res. 76A, 206 (2006)CrossRefGoogle Scholar
  42. 42.
    E. W. Barrett, M. V. B. Phelps, R. J. Silva, R. P. Gaumond, H. R. Allcock, Biomacromolecules, 6, 1689, (2005). CrossRefGoogle Scholar
  43. 43.
    M. T. Conconi, S. Lora, S. Baiguera, E. Boscolo, M. Folin, R. Scienza, P. Rebuffat, P. P. Parnigotto, G. G. Nussdorfer, J. Biomed. Mater. Res. 71A, 669, (2004) CrossRefGoogle Scholar
  44. 44.
    C. T. Laurencin, M. E. Norman, H. M. Elgendy, S. F. El-Amin, H. R. Allcock, S. R. Pucher, A. A. Ambrosio, J. Biomed. Mater. Res. 27, 963 (1993)CrossRefGoogle Scholar
  45. 45.
    C. T. Laurencin, S. F. El-Amin, S. E. Ibim, D. A. Willoughby, M. A. Attawia, H. R. Allcock, A. A. Ambrosia, J. Biomed. Mater. Res. 30, 133 (1996)CrossRefGoogle Scholar
  46. 46.
    M. Gumusderelioglu, A. Gur, React. Funct. Polym. 52, 71 (2002)CrossRefGoogle Scholar
  47. 47.
    L. S. Nair, S. Bhattacharyya, J. D. Bender, Y. E. Greish, P. W Brown, H. R. Allcock, C. T. Laurencin, Biomacromolecules, 5, 2212 (2004). CrossRefGoogle Scholar
  48. 48.
    C. T. Laurencin, L. S. Nair, S. Bhattacharyya, H. R. Allcock, J. D. Bender, P. W Brown, and Y. E. Greish, US. 2005025630 (2005)Google Scholar
  49. 49.
    H. R. Allcock, R. L. Kugel, J. Am. Chem. Soc. 87, 4216 (1965)CrossRefGoogle Scholar
  50. 50.
    H. R. Allcock, S. Kwon, S. R. Pucher, Polym. Preprints 31, 180 (1990)Google Scholar
  51. 51.
    H. R. Allcock, R. W. Allen, J. P. O’Brien, J. Am. Chem. Soc. 99, 3984 (1977) CrossRefGoogle Scholar
  52. 52.
    H. R. Allcock, P. E. Austin, and S. Kwon, U.S. 19891114 (1989)Google Scholar
  53. 53.
    H. R. Allcock, S. R. Pucher, R. J. Fitzpatrick, K. Rashid, Biomaterials 13, 857 (1992)CrossRefGoogle Scholar
  54. 54.
    C. T. Laurencin, A. M. A. Ambrosio, T. W. Bauer, H. R. Allcock, M. A. Attawia, M. D. Borden, W. J. Gorum, and D. Frank, Proceedings of the Society for Biomaterials 24th Annual Meeting in Conjunction with the 30th International Symposium, San Diego, United States (1998)Google Scholar
  55. 55.
    H. R. Allcock, R. J. Fitzpatrick, K. Visscher, L. Salvati, Chem. Mater. 4, 775 (1992)CrossRefGoogle Scholar
  56. 56.
    S. Cohen, M. C. Bano, K. B. Visscher, M. Chow, H. R. Allcock, R. Langer, J. Am. Chem. Soc. 112, 7832 (1990)CrossRefGoogle Scholar
  57. 57.
    A. K. Andrianov, S. Cohen, K. B. Visscher, L. G. Payne, H. R. Allcock, R. Langer, J. Control. Rel. 27, 69 (1993)CrossRefGoogle Scholar
  58. 58.
    H. R. Allcock, S. Kwon, Macromolecules 22, 75 (1989)CrossRefGoogle Scholar
  59. 59.
    S. Cohen, H. R. Allcock, and R. Langer, Recent Adv. Pharm. Ind. Biotechnol. Minutes Int. Pharm. Technol. Symp. 6th, 36 (1993)Google Scholar
  60. 60.
    H. R. Allcock and S. Kwon, U.S. 19911001 (1991)Google Scholar
  61. 61.
    K. Andrianov, L. G. Payne, K. B. Visscher, H. R. Allcock, R. Langer, J. Appl. Polym. Sci. 53, 1573 (1994) CrossRefGoogle Scholar
  62. 62.
    H. R. Allcock, S. Kwon, Macromolecules 21, 1980 (1988)CrossRefGoogle Scholar
  63. 63.
    H. R. Allcock, S. R. Pucher, M. L. Turner, R. J. Fitzpatrick, Macromolecules 25, 5573 (1992)CrossRefGoogle Scholar
  64. 64.
    H. R. Allcock, G. K. Dudley, Macromolecules 29, 1313 (1996)CrossRefGoogle Scholar
  65. 65.
    H. R. Allcock, A. M. A. Ambrosio, Biomaterials 17, 2295 (1996)CrossRefGoogle Scholar
  66. 66.
    H. R. Allcock and A. M. A. Ambrosio, US. 19990427 (1999)Google Scholar
  67. 67.
    Y. Chang, E. S. Powell, H. R. Allcock, S. M. Park, C. Kim, Macromolecules 36, 2568 (2003)CrossRefGoogle Scholar
  68. 68.
    Y. Chang, H. R. Allcock, Advanced Materials 15, 537 (2003)CrossRefGoogle Scholar
  69. 69.
    Y. Chang, E. S. Powell, H. R. Allcock, J. Polym. Sci. Part A: Polym. Chem. 43, 2912, (2005)CrossRefGoogle Scholar
  70. 70.
    H. R. Allcock, E. S. Powell, Y. Chang, C. Kim, Macromolecules 37, 7163 (2004)CrossRefGoogle Scholar
  71. 71.
    Y. Chang, R. Prange, H. R. Allcock, S. C. Lee, C. Kim, Macromolecules 35, 8556 (2002)CrossRefGoogle Scholar
  72. 72.
    S. E. M. Ibim, S. F. El-Amin, M. E. P. Goad, A. M. A. Ambrosio, H. R. Allcock, C. T. Laurencin, Pharm. Dev. Technol. 3, 55 (1998) CrossRefGoogle Scholar
  73. 73.
    S. E. M. Ibim, S. F. El-Amin, A. Ambrosia, H. Allcock, and C. T. Laurencin, Proc. Int. Symp. Control. Rel. Bioact. Mater. 21, 266 (1994)Google Scholar
  74. 74.
    C. T. Laurencin, R. S. Langer, H. R. Allcock, and T. X. Neenan, PCT Int. Appl. 19881215 (1988) Google Scholar
  75. 75.
    S. M. Ibim, A. M. A. Ambrosio, D. Larrier, H. R. Allcock, C. T. Laurencin, J. Control. Rel. 40, 31 (1996)CrossRefGoogle Scholar
  76. 76.
    C. T. Laurencin, S. E. M. Ibim, H. R. Allcock, A. M. A. Ambrosio, S. El-Amin, M. S. Kwon, Proc. Inter. Symp. Control. Rel. Bioact. Mater. 24, 971 (1997) Google Scholar
  77. 77.
    C. T. Laurencin, M. D. Borden, A. M. A. Ambrosio, M. A. Attawia, F. K. Ko, H. R. Allcock, and G. M. Morrill, ACS National Meeting, Boston, 216, POLY 246 (1998)Google Scholar
  78. 78.
    A. M. A. Ambrosio, J. S. Sahota, C. Runge, S. M. Kurtz, S. Lakshmi, H. R. Allcock, C. T. Laurencin, IEEE Eng. Med. Biol. Mag. 22, 18 (2003) CrossRefGoogle Scholar
  79. 79.
    S. Bhattacharyya, S. Lakshmi, J. Bender, Y. E. Greish, P. W. Brown, H. R. Allcock, and C. T. Laurencin, Mater. Res. Soc. Symp. Pro. EXS-1, 157 (2004)Google Scholar
  80. 80.
    Y. E. Greish, J. D. Bender, S. Lakshmi, P. W. Brown, H. R. Allcock, C. T. Laurencin, Biomaterials, 26, 1 (2004)CrossRefGoogle Scholar
  81. 81.
    S. Sethuraman, L. S. Nair, A. Singh, J. D. Bender, Y. E. Greish, P. W. Brown, H. R. Allcock, C. T. Laurencin Eng. Mater. Res. Soc. Symp. Proc. 845, 291 (2005). Google Scholar
  82. 82.
    C. T. Laurencin, J. L. Brown, and L. S. Nair, US Provisional Patent Appl. # o 60/808,994Google Scholar
  83. 83.
    C. T. Laurencin, H. J. Koh, T. X. Neenan, H. R. Allcock, R. Langer, J. Biomed. Mater. Res. 21, 1231 (1987) CrossRefGoogle Scholar
  84. 84.
    F. Langone, S. Lora, F. M. Veronese, P. Caliceti, P. P. Parnigotto, F. Valenti, G. Palma, Biomaterials, 16, 347 (1995) CrossRefGoogle Scholar
  85. 85.
    N. N. Aldini, M. Fini, M. Rocca, L. Martini, R. Giardino, P. Caliceti, F. M. Veronese, S. Lora, M. C. Maltarello, J. Bioact. Compat. Polym. 12, 3 (1997)Google Scholar
  86. 86.
    F. M. Veronese, F. Marsilioa, S. Lora, P. Caliceti, P. Passi, P. Orsolini, Biomaterials, 20, 91 (1999)CrossRefGoogle Scholar
  87. 87.
    C. T. Laurencin, H. R. Allcock, S. E. M. Ibim, A. M. A. Ambrosio, and M. S. Kwon, U.S. 6077916 (2000)Google Scholar
  88. 88.
    S. E. M. Ibim, A. M. A. Ambrosio, M. S. Kwon, S. F. Al-Amin, H. R. Allcock, C. T. Laurencin, Biomaterials, 18, 1565 (1997) Google Scholar
  89. 89.
    L. S. Nair, J. D. Bender, A. Singh, S. Sethuraman, Y. E. Greish, P. W. Brown, H. R. Allcock, C. T. Laurencin, Mater. Res. Soc. Symp. Proc. 844, 319 (2005) Google Scholar
  90. 90.
    A. M. A. Ambrosio, H. R. Allcock, D. S. Katti, C. T. Laurencin, Biomaterials, 23, 1667 (2002). CrossRefGoogle Scholar
  91. 91.
    L. Y Qiu, K. J. Zhu, Polym. Int. 49, 1283 (2000)CrossRefGoogle Scholar
  92. 92.
    L. Y. Qiu, Polym. Int. 51, 481 (2002) CrossRefGoogle Scholar
  93. 93.
    L. Qiu, Shengwu Yixue Gongchengxue Zazhi, 19, 191 (2002) Google Scholar
  94. 94.
    Y. Lemmouchi, E. Schacht, S. Dejardin, J. Bioact. Compat. Polym. 13, 4 (1998) Google Scholar
  95. 95.
    B. H. Lee, S. C. Song, Macromolecules, 37, 4533 (2004) CrossRefGoogle Scholar
  96. 96.
    S. B. Lee, S.C. Song, J. I. Jin, Y. S. Sohn, Macromolecules 32, 7820 (1999) CrossRefGoogle Scholar
  97. 97.
    S. C. Song, S. B. Lee, J. Jin, Y. S. Sohn, Macromolecules 32, 2188 (1999) CrossRefGoogle Scholar
  98. 98.
    S. B. Lee, S. C. Song, Polym. Int. 54, 1225 (2005) CrossRefGoogle Scholar
  99. 99.
    J. X. Zhang, L. Y. Qiu, Y. Jina, K. J. Zhub, Coll. Surf. B: Biointerfaces, 43, 123 (2005) CrossRefGoogle Scholar
  100. 100.
    H. R. Allcock, A. Singh, A. M. A. Ambrosio, W. R. Laredo, Biomacromolecules, 4, 1646 (2003) CrossRefGoogle Scholar
  101. 101.
    http://www.vido.org/research/vaccine_fd/index.php#polyphosGoogle Scholar
  102. 102.
    J. H. Goedemoed, K. De Groot, Makromol. Chem. Macromol. Symp. 19, 341 (1988) Google Scholar
  103. 103.
    Y. Lemmouchi, E. Schacht, S. Dejardin, J. Vandorpe, L. Seymour, Macromol. Symp. 123, 103 (1997) Google Scholar
  104. 104.
    C. T. Laurencin, C. D. Morris, H. P. Jacques, E. R. Schwartz, A. R. Keaton, L. Zou, Polym. Adv .Technol. 3, 359 (1992) CrossRefGoogle Scholar
  105. 105.
    C. T. Laurencin, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1987) Google Scholar
  106. 106.
    S. Sethuraman, L. S. Nair, S. El-Amin, R. Farrar, M. N. Nguyen, A. Singh, H. R. Allcock, Y. E. Greish, P. W. Brown, C. T. Laurencin, J. Biomed. Mater. Res. Part A, 7A, 679 (2006) CrossRefGoogle Scholar
  107. 107.
    S. Nagel and M. Boxberger, Eur. Pat. Appl. 9 pp. EPXXDW EP 1179353 A1 20020213 (2002)Google Scholar
  108. 108.
    S. Cohen, A. K. Andrianov, M. Wheatley, H. R. Allcock, and R. S. Langer, U.S. 19961008 (1996)Google Scholar
  109. 109.
    S. Cohen, A. K. Andrianov, M. Wheatley, H. R. Allcock, and R. S. Langer, U.S. 12 pp., A19960130 (1996)Google Scholar
  110. 110.
    A. K. Andrianov, A. Marin, J. Chen, Biomacromolecules 7, 394 (2006) CrossRefGoogle Scholar
  111. 111.
    A. K. Andrianov, Y. Y. Svirkin, M. P. LeGolvan, Biomacromolecules, 5, 1999 (2004)CrossRefGoogle Scholar
  112. 112.
    B. H. Lee, Y. M. Lee, Y. S. Sohn, S.C. Song, Polym. Int. 51, 658 (2002) CrossRefGoogle Scholar
  113. 113.
    M. V. B. Phelps, H. R. Allcock, PMSE Preprints, 91, 550 (2004) Google Scholar
  114. 114.
    K. Andrianov, L. G. Payne, K. B. Visscher, H. R. Allcock, R. Langer, Polym. Preprints, 34, 233 (1993) Google Scholar
  115. 115.
    H. R. Allcock, W. R. Laredo, J. D. Bender, A. M. A. Ambrosio, Polym. Preprints, 43, 654 (2002)Google Scholar
  116. 116.
    J. Luten, J. H. van Steenis, R. van Someren, J. Kemmink, N. M. E. Schuurmans-Nieuwenbroek, G. A. Koning, D. J. A. Crommelin, C. F. van Nostrum, W. E. Hennink, J. Control. Rel. 89, 483 (2003) CrossRefGoogle Scholar
  117. 117.
    M. A. E. M. van der Aa, G. A. Koning, C. d’Oliveira, R. S. Oosting, K. J. Wilschut, W. E. Hennink, D. J. A. Crommelin, J. Gene. Med. 7, 208 (2005) CrossRefGoogle Scholar
  118. 118.
    H. K. de Wolf, J. Luten, C. J. Snel, C. Oussoren, W. E. Hennink, G. Storm, J. Control. Rel. 109, 275 (2005) CrossRefGoogle Scholar
  119. 119.
    Y. J. Jun, J. I. Kim, M. J. Jun, Y. S. Sohn, J. Inorg. Biochem. 99, 1593 (2005) CrossRefGoogle Scholar
  120. 120.
    S. Conforti, S. Bertani, S. Lussignoli, L. Grigolini, M. Terzi, S. Lora, P. Caliceti, F. Marsilio, F. M. Veronese, J. Pharm. Pharmacol. 48, 468 (1996) Google Scholar
  121. 121.
    S. Lora, M. Carenza, G. Palma, G. Pezzin, P. CaJicetit, P. Battagliaz, A. Lora, Bomaterials, 12, 275 (1991). CrossRefGoogle Scholar
  122. 122.
    H. R Allcock, S. R. Pucher, A. G. Scopelianos, Biomaterials, 15, 563 (1994) CrossRefGoogle Scholar
  123. 123.
    Y. Chang, J. D. Bender, M. V. B. Phelps, H. R. Allcock, Biomacromolecules 3, 1364 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Sangamesh G. Kumbar
    • 1
  • Subhabrata Bhattacharyya
    • 4
  • Syam Prasad Nukavarapu
    • 1
  • Yusuf M. Khan
    • 1
    • 2
  • Lakshmi S. Nair
    • 1
  • Cato T. Laurencin
    • 1
    • 2
    • 3
  1. 1.Department of Orthopaedic SurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations