Synthesis of Organotin Polyamine Ethers Containing Acyclovir and their Preliminary Anticancer and Antiviral Activity

  • Charles E. CarraherJr.
  • Theodore S. Sabir
  • Michael R. Roner
  • Kimberely Shahi
  • Robert E. Bleicher
  • Joanne L. Roehr
  • Kelly D. Bassett
Article

Abstract

Organotin polyamine ethers containing acyclovir in their backbone were synthesized in moderate to high yield employing the aqueous interfacial polycondensation system. The products are high molecular weight polymers. Infrared spectroscopy of the products shows new bands characteristic of the formation of Sn–N and Sn–O bonds consistent with the proposed structure. MALDI-TOF MS below 2000 Da shows the presence of organotin and acyclovir units containing these two moieties. The products show moderate inhibition of a number of cancer cell lines and exhibit the ability to inhibit a number of viruses, particularly the herpes simplex virus-1 and varicella zoster virus that are responsible for herpes, chicken pox and shingles.

Keywords

Organotin polymers acyclovir interfacial polymerization MALDI-TOF MS herpes chicken pox small pox shingles reovirus ST3 HSV-1 viruses viruses bioterrorism VZV virus varicella zoster virus vaccinia WR virus herpes simplex virus anticancer drugs L929 cells 143 cells BS-C-1 cells vero cells 

References

  1. 1.
    H. J. Schaeffer, US Pat. 4199574 (1976, to Wellcome)Google Scholar
  2. 2.
    Elion G., Furman P., Fyfe J., Miranda P., Beauchamp L., Schaeffer H.J., (1977) Proc. Natl. Acad. Sci. USA 74: 5716CrossRefGoogle Scholar
  3. 3.
    Physicians’ Desk Reference, 55 Edition, Medical Economics (Thompson Healthcare, Montville, NJ, 2001)Google Scholar
  4. 4.
    Sabir T., Carraher C. (2005) J. Polym. Mater. 22: 449Google Scholar
  5. 5.
    A. Garcia-Raso, J. Fiol, F. Badenas, R. Cons, A. Terron, and M. Quiros, J. Chem. Soc., Dalton Trans. 167 (1999)Google Scholar
  6. 6.
    Turel I., Leban I., Gruber K., (1996) J. Inorg. Biochem. 63: 41CrossRefGoogle Scholar
  7. 7.
    C. Carraher, Macromolecules Containing Metal and Metal-Like Elements. Vol. 4. Group IVB Polymers, Chpt. 10 (Wiley, Hoboken, NJ, 2005)Google Scholar
  8. 8.
    C. Carraher and D. Siegmann-Louda, Macromolecules Containing Metal and Metal-Like Elements. Vol. 3. Biomedical Applications, Chpt. 4 (Wiley, Hoboken, NJ, 2004)Google Scholar
  9. 9.
    C. Carraher, D. Winter (1971) Makromol. Chem. 141: 237CrossRefGoogle Scholar
  10. 10.
    Carraher C., Scherubel G., (1972) Makromol. Chem. 152: 61CrossRefGoogle Scholar
  11. 11.
    Carraher C., Scherubel G., (1971) J. Polymer Science, A-1 9: 983CrossRefGoogle Scholar
  12. 12.
    C. Carraher and D. Winter, Makromol. Chem. 152, 55 (1972); 141, 259 (1971)Google Scholar
  13. 13.
    Carraher C., Winter D. (1973) J. Macromol. Sci.-Chem. A7: 1349Google Scholar
  14. 14.
    Carraher C., (1973) Angew. Makromol. Chem. 31: 115CrossRefGoogle Scholar
  15. 15.
    Freshney R. (1994) Culture of Animal Cells: A Manual of Basic Technique, 3rd Ed. Wiley-Liss, NYGoogle Scholar
  16. 16.
    Willard M. (2002) J. Virol. 76: 5220CrossRefGoogle Scholar
  17. 17.
    S. Koyano, T. Suzutani, I. Yoshida, M. Azuma, M. (1996) Antimicrobial Agents and Chemo. 40: 920Google Scholar
  18. 18.
    C. Carraher, T. Sabir, and C. Carraher. (2006) J. Polym. Mater. 23: 143Google Scholar
  19. 19.
    Carraher C., Sabir T., Carraher C. (2006) Polym. Mater. Sci. Eng. 94: 553Google Scholar
  20. 20.
    Ksiazek T., Erdman D., Goldsmith C., Zaki S., Peret T., Emery S., Tong S., Urbani C., Comer J., Lim W., Rollin P., Nghiem K., Dowell S., Ling A., Humphary C., Shieh W., Guarner J., Paddock C., Rota P., Fields B., DeRisi J., Yang J., Cox N., Hughes J., LeDuc J., Bellini W., Anderson L., (2003) N. Engl. J. Med. 348(20): 1967CrossRefGoogle Scholar
  21. 21.
    Drosten C., Gunther S., Preiser W., Van Der Werf S., Brodt H., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R., Berger A., Burguiere A., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H., Osterhaus A., Schmitz H., Doerr H., (2003) N. Eng. J. Med. 348(20): 1953CrossRefGoogle Scholar
  22. 22.
    Cunliffe N., Bresee N., Hart C., (2002) J. Infect. 45(1): 1CrossRefGoogle Scholar
  23. 23.
    Shmulevitz M., Marcato P., Lee P.W., (2005) Oncogene 24: 7720CrossRefGoogle Scholar
  24. 24.
    Picardi A., Gentilucci U., Zardi E., D’Avola E., Amoroso A., Afeltra A., (2004) Curr. Pharm. Des. 10(17): 2081CrossRefGoogle Scholar
  25. 25.
    Ward S., Taylor R., Craig C., Crowe A., (1988) Appl. Organometal. Chem. 2(1): 47CrossRefGoogle Scholar
  26. 26.
    Ward S., Taylor R., Craig C., Crowe A., Balzarini J., De Clercq E., (1989) Appl. Organometal, Chem. 3(5):431CrossRefGoogle Scholar
  27. 27.
    Pagano J.S., Basler M., Buendia M.A., Damania B., Khalili K., Raab-Traub N., Roizman B., (2004) Semin Cancer Biol. 14(6): 453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Charles E. CarraherJr.
    • 1
    • 5
  • Theodore S. Sabir
    • 1
    • 2
  • Michael R. Roner
    • 3
  • Kimberely Shahi
    • 3
  • Robert E. Bleicher
    • 4
  • Joanne L. Roehr
    • 3
  • Kelly D. Bassett
    • 3
  1. 1.Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of ChemistryProvidence Christian CollegeOntarioUSA
  3. 3.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.California State University Channel IslandsCamarilloUSA
  5. 5.Florida Center for Environmental StudiesPalm Beach GardensUSA

Personalised recommendations