Polysilsesquioxanes and Oligosilsesquioxanes Substituted by Alkylammonium Salts as Antibacterial Biocides

  • J. Chojnowski
  • W. Fortuniak
  • P. Rościszewski
  • W. Werel
  • J. Łukasiak
  • W. Kamysz
  • R. Hałasa
Original Paper

Abstract

Octa(3-chloropropylsilsesquioxane), (T-ClPr)8, and a soluble, low molecular weight, poly(3-chloropropylsilsesquioxane) were subjected to a reaction with dimethyl-n-octylamine to convert part or almost all the chloropropyl groups to corresponding quaternary ammonium salt (QAS) groups. Polysilsesquioxanes containing secondary n-amylammonium salt (SAS) groups were synthesized by reaction of n-alkyl bromides with poly(3-aminopropylsilsesquioxane) of limited molecular weight or by amination of n-amyl bromide with 3-aminopropyltriethoxysilane followed by hydrolysis and polycondensation. The antibacterial activity of these QAS- and SAS-containing silsesquioxane materials against two representative Gram-positive and three representative Gram-negative bacterium strains were tested. Most of these materials showed high or moderate activity against Gram-positive bacteria and moderate or weak activity against Gram-negative bacteria.

Keywords

Polysilsesquioxanes quaternary ammonium biocidal polymers antimicrobials antimicrobial polymers antibacterial agents QAS quats 

Notes

Acknowledgments

The financial support by the Ministry of Education and Science of Republic of Poland, Grant 3 T09 B 06926 is highly appreciated. Authors are indebted to Dr Grzegorz Lapienis for the performing of the SEC analysis in water solution.

References

  1. 1.
    Rahn O., Van Eseltine W. (2000). Annu. Rev. Microbiol. 1:173CrossRefGoogle Scholar
  2. 2.
    Franklin T. J., Snow G. A. (1981). Biochemistry of Antibacterial Action. Chapman and Hall Ltd, LondonGoogle Scholar
  3. 3.
    McBain A. J., Ledder R. G., Moore L. E., Catrenich C. E., Gilbert P. (2004). Appl. Environ. Microb. 70:3449CrossRefGoogle Scholar
  4. 4.
    Kanazawa A., Ikeda T., Mendo T. (1993). J. Polym. Sci. Part A, Polymer Chem. 31:1441CrossRefGoogle Scholar
  5. 5.
    Denyer S. P. (1995). Int. Biodeter. Biodegr. 36:227CrossRefGoogle Scholar
  6. 6.
    Kenawy E. R., Abdel-Hay F. I., El-Raheem A., El-Shanshoury R., El-Newehy M. H. (2002). J. Polym. Sci, Part A: Polym. Chem. 40:2384CrossRefGoogle Scholar
  7. 7.
    Ślusarczyk A., Kuczyńska H. (2004). Polimery 49:589Google Scholar
  8. 8.
    Battice D. R., Hales M. G. (1985). J. Cellular Plastics 5701:332Google Scholar
  9. 9.
    El Ola S. M. A., Kotek R., White W. C., Reeve J. A., Hauser P., Kim J. H. (2004). Polymer 45:3215CrossRefGoogle Scholar
  10. 10.
    N. Clarkson and L. V. Evans, Biofouling 7, 187 (1993); ibid. 9, 129 (1995).Google Scholar
  11. 11.
    A. Popa, G. Ilia, S. Iliescu, G. Dehelean, A. Pascariu, A. Bora, and C. M. Davidescu, Mol. Cryst. Liq. Cryst. 418, 923 (2004); A. Popa, C. M. Davidescu, R. Trif, G. Ilia, S. Iliescu, and G. Dehelean, React. Funct. Polym. 55, 151 (2003).Google Scholar
  12. 12.
    Worley S. D., Sun G. (1996). Trends Polym. Sci. 4:364Google Scholar
  13. 13.
    Tashiro T. (2001). Macromol. Mater. Eng. 286:63CrossRefGoogle Scholar
  14. 14.
    N. Nurdin, G. Helary, and G. Sauvet, J. Appl. Polym. Sci. 50, 663 (1993); J. Hazziza-Laskar, G. Helary, and G. Sauvet, ibid. 58, 77 (1995).Google Scholar
  15. 15.
    Kim C. H., Choi K. S. (2002). J. Ind. Eng. Chem. 8:71Google Scholar
  16. 16.
    Kenawy E. R., Mahmoud Y. A. G. (2003). Macromol. Biosci. 3:107CrossRefGoogle Scholar
  17. 17.
    Dizman B., Elasri M. O., Mathias L. J. (2004). J. Appl. Polym. Sci. 94:635CrossRefGoogle Scholar
  18. 18.
    Kugler R., Bouloussa O., Rondelez F. (2005). Microbiol. 151:1341CrossRefGoogle Scholar
  19. 19.
    Sauvet G., Dupond S., Kaźmierski K., Chojnowski J. (2000). J. Appl. Polym. Sci. 75:1005CrossRefGoogle Scholar
  20. 20.
    Sauvet G., Fortuniak W., Kaźmierski K., Chojnowski J. (2003). J. Polym. Sci., Part A: Polym. Chem. 41:2939CrossRefGoogle Scholar
  21. 21.
    Hardman B., Torkelson A. (1989). in Encyclopedia of Polymer Science and Engineering. In: Mark H. F., Bikales N. M., Overberger C. G., Menges G., Kroschwitz J. I., (eds) 2nd edn., Vol 15. J. Wiley & Sons, New York, pp. 204–308Google Scholar
  22. 22.
    Dittmar U., Hendan B. J., Flörke U., Marsmann H. C. (1995). J. Organomet. Chem. 489:185CrossRefGoogle Scholar
  23. 23.
    R. Weidner, N. Zellner, B. Deubzner, and V. F. Frey, Schutzrecht DE 383797-A1 (10.5.1990); Wacker-Chemie, Int. Cl. 5: C 07 F 7/08, Chem. Abstr. 113, 116465m (1990).Google Scholar
  24. 24.
    Rościszewski P., Kazimierczuk R., Sołtysiak J. (2006). Polimery 51(1):3Google Scholar
  25. 25.
    Andrews J. M. (2001). J. Antimicrob. Chemoth. 48(Suppl. S1):5Google Scholar
  26. 26.
    Laine R. M. (2005). J. Mater. Chem. 15:3725CrossRefGoogle Scholar
  27. 27.
    Amsterdam D. (1996). In: Loman V. (ed). Antibiotics in Laboratory Medicine, 4th edn. Williams and Wilkins, Baltimore, pp. 52–111Google Scholar
  28. 28.
    Łukasiak J., Rościszewski P., Jamrógiewicz Z., Dąbrowska-Szponar M., Glinka R., Falkiewicz B. (1999). Pol. J. Cosmet. 3:209Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. Chojnowski
    • 1
  • W. Fortuniak
    • 1
  • P. Rościszewski
    • 2
  • W. Werel
    • 3
  • J. Łukasiak
    • 3
  • W. Kamysz
    • 3
  • R. Hałasa
    • 3
  1. 1.Center of Molecular and Macromolecular StudiesPolish Academy of SciencesŁódźPoland
  2. 2.Institute of Industrial ChemistryWarsawPoland
  3. 3.Gdańsk Medical UniversityGdańskPoland

Personalised recommendations