Journal of Happiness Studies

, Volume 14, Issue 6, pp 1765–1788 | Cite as

Individual Differences in How Work and Nonwork Life Domains Contribute to Life Satisfaction: Using Factor Mixture Modeling for Classification

  • Heike HeidemeierEmail author
  • Anja S. Göritz
Research Paper


This study used factor mixture modeling to investigate individual differences in how life satisfaction is construed. Referring to the cognitive regulation of well-being we aimed to identify individuals for whom work and nonwork life domains contribute differently to overall life satisfaction. In a sample of 1,704 working adults two subgroups with different response patterns were identified. In the first subgroup work and nonwork life domains contributed equally to overall life satisfaction. In the second subgroup satisfaction with nonwork rather than work-related life domains were important sources of life satisfaction. Furthermore, participants in the second group processed negative affect from the work domain in ways that enabled them to maintain high levels of life satisfaction. We examined the external validity of class assignment and replicated our findings in a second sample. How factor mixture modeling can be used to uncover cognitive mechanisms that operate in evaluations of life satisfaction is discussed.


Life satisfaction Self-evaluation Well-being paradox Factor mixture modeling Work-nonwork linkages Measurement invariance 



Study 1 was supported by DFG grant GO 1107/4-1 to Anja S. Göritz. Study 2 was supported by the German Federal Ministry of Education and Research and the European Social Fund as part of the “demopass project” (grant 01FA0712).


  1. Alicke, M. D. (1985). Global self-evaluation as determined by the desirability and controllability of trait adjectives. Journal of Personality and Social Psychology, 49, 1621–1630.CrossRefGoogle Scholar
  2. Alicke, M. D., Klotz, M. L., Breitenbecher, D. L., Yurak, T. J., & Vredenburg, D. S. (1995). Personal contact, individuation, and the better-than-average effect. Journal of Personality and Social Psychology, 68, 804–825.CrossRefGoogle Scholar
  3. Bartholomew, D. J., & Knott, M. (1999). Latent variables models and factor analysis (2nd ed.). London: Arnold.Google Scholar
  4. Bernstein, A., Stickle, T. R., Zvolensky, M. J., Taylor, S., Abramowitz, J., & Stewart, S. (2010). Dimensional, categorical, or dimensional-categories: Testing the latent structure of anxiety sensitivity among adults using factor-mixture modeling. Behavior Therapy, 41, 515–529.CrossRefGoogle Scholar
  5. Best, C. J., Cummins, R. A., & Lo, S. K. (2000). The quality of rural and metropolitan life. Australian Journal of Psychology, 52, 69–74.CrossRefGoogle Scholar
  6. Bowling, N. A., Eschleman, K. J., & Wang, Q. (2010). A meta-analytic examination of the relationship between job satisfaction and subjective well-being. Journal of Occupational and Organizational Psychology, 83, 915–934.CrossRefGoogle Scholar
  7. Brickman, P., Coates, D., & Janoff-Bolman, R. (1978). Lottery winners and accident victims: Is happiness relative? Journal of Personality and Social Psychology, 37, 917–927.CrossRefGoogle Scholar
  8. Byrne, B. (2001). Structural equation modeling with AMOS: basic concepts, applications, and programming. Lawrence Erlbaum Associates, Inc.Google Scholar
  9. Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13(2), 195−212.Google Scholar
  10. Crutzen, R., & Göritz, A. S. (2010). Social desirability and self-reported health risk behaviors in web-based research: three longitudinal studies. BMC Public Health, 10, 720.CrossRefGoogle Scholar
  11. Cummins, R. A., & Nistico, H. (2002). Maintaining life satisfaction: The role of positive cognitive bias. Journal of Happiness Studies, 3, 37–69.CrossRefGoogle Scholar
  12. Dolan, C., & Van der Maas, H. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227–253.CrossRefGoogle Scholar
  13. Dunning, D., Meyerowitz, J. A., & Holzberg, A. D. (1989). Ambiguity and self-evaluation. Journal of Personality and Social Psychology, 57, 1082–1090.CrossRefGoogle Scholar
  14. Easterlin, R. (2006). Life cycle happiness and its sources. Intersections of psychology, economics, and demography. Journal of Economic Psychology, 27, 463–482.CrossRefGoogle Scholar
  15. Eid, M. (2008). Measuring the immeasurable. Psychometric modeling of subjective well-being data. In M. Eid & R. J. Larsen (Eds.), The science of subjective well-being (pp. 141–167). New York: The Guilford Press.Google Scholar
  16. Eid, M., & Langeheine, R. (2007). Detecting population heterogeneity in stability and change of subjective well-being by mixture distribution models. In A. Ong & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 501–607). Oxford: Oxford University Press.Google Scholar
  17. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  18. Goodman, L. A. (2002). Latent class analysis: The empirical study of latent types, latent variables, and latent structures. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis. Cambridge: Cambridge University.Google Scholar
  19. Greenbaum, P. E., & Dedrick, R. F. (2007). Changes in use of alcohol, marijuana, and services by adolescents with serious emotional disturbance: A parallel-process growth mixture model. Journal of Emotional and Behavioral Disorders, 15, 21–32.CrossRefGoogle Scholar
  20. Hart, P. (1999). Predicting employee life satisfaction: A coherent model of personality, work and nonwork experiences, and domain satisfactions. Journal of Applied Psychology, 84, 564–584.CrossRefGoogle Scholar
  21. Headey, B.W. & Wearing, A. J. (1992). Understanding happiness: A theory of subjective well-being. Melbourne: Longman Cheshire.Google Scholar
  22. Heidemeier, H. & Moser, K. (2009). Self-other agreement in job performance ratings: A meta-analytical test of a process model. Journal of Applied Psychology, 94, 353–370.Google Scholar
  23. Heidemeier, H., & Staudinger, U. M. (2012). Self-evaluation processes in life satisfaction: Uncovering measurement non-equivalence and age-related differences. Social Indicators Research, 105, 39–61.CrossRefGoogle Scholar
  24. Heller, D., Watson, D., & Hies, R. (2004). The role of person versus situation in life satisfaction: A critical examination. Psychological Bulletin, 130, 574–600.CrossRefGoogle Scholar
  25. Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling, 14, 202–226.CrossRefGoogle Scholar
  26. Horn, J., & McArdle, J. (1992). A practical guide and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 3, 117–144.CrossRefGoogle Scholar
  27. Hu, X., Kaplan, S., & Dalal, R. S. (2010). An examination of blue- versus white-collar workers’ conceptualizations of job satisfaction facets. Journal of Vocational Behavior, 76, 317–325.CrossRefGoogle Scholar
  28. Jöreskog, K. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409–426.CrossRefGoogle Scholar
  29. Judge, T., & Watanabe, S. (1993). Another look at the job satisfaction-life satisfaction relationship. Journal of Applied Psychology, 78, 939–948.CrossRefGoogle Scholar
  30. Judge, T., & Watanabe, S. (1994). Individual differences in the nature of the relationship between job and life satisfaction. Journal of Occupational and Organizational Psychology, 67, 101–107.CrossRefGoogle Scholar
  31. Kabanoff, B. (1980). Work and nonwork: A review of models, methods, and findings. Psychological Bulletin, 88, 60–77.CrossRefGoogle Scholar
  32. Kalleberg, A. L. (2001). Satisfied movers, committed stayers: The impact of job mobility on work attitudes in Norway. Work and Occupations, 28, 183–209.CrossRefGoogle Scholar
  33. Kalleberg, A. L. (2008). The mismatched worker: When people don’t fit their jobs. The Academy of Management Perspectives, 22, 24–40.CrossRefGoogle Scholar
  34. Kenny, D. A. (1994). Interpersonal perception: A social relations analysis (Chapter 9: Self-perception). New York, NY: Guilford Press.Google Scholar
  35. Knoop, R. (1989). Locus of control: A work-related variable? Journal of Social Psychology, 129, 101–106.CrossRefGoogle Scholar
  36. Krueger, J. (1998). Enhancement bias in descriptions of self and others. Personality and Social Psychology Bulletin, 24, 505–516.CrossRefGoogle Scholar
  37. Kuo, P.-H., Aggen, S., Prescott, C., Kendler, K., & Neale, M. (2008). Using a factor mixture modeling approach in alcohol dependence in a general population sample. Drug and Alcohol Dependence, 98, 105–114.CrossRefGoogle Scholar
  38. Lachman, M., & Weaver, S. (1998). Sociodemographic variations in the sense of control by domain: Findings from the MacArthur Studies of Midlife. Psychology and Aging, 4, 553–562.CrossRefGoogle Scholar
  39. Lazarsfeld, P., & Henry, N. (1968). Latent structure analysis. Boston: Houghton Mifflin Company.Google Scholar
  40. Leite, W., & Cooper, L. (2010). Detecting social desirability bias using factor mixture models. Multivariate Behavioral Research, 45, 271–293.CrossRefGoogle Scholar
  41. Lenzenweger, M. F., McLachlan, G., & Rubin, D. B. (2007). Resolving the latent structure of schizophrenia endophenotypes using expectation-maximization-based finite mixture modeling. Journal of Abnormal Psychology, 116, 16–29.CrossRefGoogle Scholar
  42. Lubke, G. H., Hudziak, J. J., Derks, E. M., van Bijsterveldt, T. C. E. M., & Boomsma, D. I. (2009). CBCL attention problems and the relation to DSM diagnoses: Lack of evidence for categorically distinct subtyping. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 1085–1093.CrossRefGoogle Scholar
  43. Lubke, G., & Muthén, B. (2004). Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons. Structural Equation Modeling, 11, 514–534.CrossRefGoogle Scholar
  44. Lubke, G., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.CrossRefGoogle Scholar
  45. Lubke, G. H., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 26–47.Google Scholar
  46. Lubke, G. H., Muthén, B. O., Moilanen, I. K., McGough, J. J., Loo, S. K., Swanson, J. M., et al. (2007). Subtypes vs. severity differences in attention deficit hyperactivity disorder in the Northern Finnish Birth Cohort (NFBC). Journal of the American Academy of Child and Adolescent Psychiatry, 46, 1584–1593.CrossRefGoogle Scholar
  47. Lubke, G. H., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood. Multivariate Behavioral Research, 41, 499–532.CrossRefGoogle Scholar
  48. Lubke, G. H., & Neale, M. C. (2008). Distinguishing between latent classes and continuous factors with categorical outcomes: Class-invariance of parameters of factor mixture models. Multivariate Behavioral Research, 43, 592–620.CrossRefGoogle Scholar
  49. Lubke, G., & Spies, J. (2008). Choosing a ‘correct’ factor mixture model: Power, limitations, and graphical data exploration. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 343–362). Charlotte, NC: Information Age Publishing.Google Scholar
  50. Lubke, G. H., & Tueller, S. (2010). Latent class detection and class assignment: A comparison of the MAXEIG taxometric procedure and factor mixture modeling approaches. Structural Equation Modeling: A Multidisciplinary Journal, 17, 605–628.CrossRefGoogle Scholar
  51. Luchman, J. N., Kaplan, S. A., & Dalal, R. S. (2012). Getting older and getting happier with work: An information-processing explanation. Social Indicators Research, 108, 535–552.CrossRefGoogle Scholar
  52. Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.CrossRefGoogle Scholar
  53. Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39, 479–515.CrossRefGoogle Scholar
  54. Muthén, B. (2006). Should substance use disorders be considered as categorical or dimensional? Addiction, 101, 6–16.CrossRefGoogle Scholar
  55. Muthén, B. (2008). Latent variable hybrids: Overview of old and new models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models. Charlotte: Information Age Publishing.Google Scholar
  56. Muthén, B., & Asparouhov, T. (2006). Item response mixture modeling: Application to tobacco dependence criteria. Addictive Behaviors, 31, 1050–1066.CrossRefGoogle Scholar
  57. Muthén, L., & Muthén, B. (1998–2008). Mplus user’s guide. Los Angeles.Google Scholar
  58. Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.CrossRefGoogle Scholar
  59. Near, J., Rice, R., & Hunter, R. (1987). Job satisfaction and life satisfaction: A profile analysis. Social Indicators Research, 19, 383–401.CrossRefGoogle Scholar
  60. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.CrossRefGoogle Scholar
  61. Rasmussen, E. R., Neuman, R. J., Heath, A. C., Levy, F., Hay, D. A., & Todd, R. D. (2002). Replication of the latent class structure of Attention-Deficit/Hyperactivity Disorder (ADHD) subtypes in a sample of Australian twins. Journal of Child Psychology and Psychiatry, 43, 1018–1028.CrossRefGoogle Scholar
  62. Rice, R., Near, J., & Hunt, R. (1980). The job satisfaction-life satisfaction relationship: A review of empirical research. Basic and Applied Social Psychology, 1, 37–64.CrossRefGoogle Scholar
  63. Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75/92.Google Scholar
  64. Ruscio, J., Haslam, N., & Ruscio, A. M. (2006). Introduction to the taxometric method: A practical guide. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  65. Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an iterative algorithm. Multivariate Behavioral Research, 43, 355–381.CrossRefGoogle Scholar
  66. Ruscio, J., & Kaczetow, W. (2009). Differentiating categories and dimensions: Evaluating the robustness of taxometric analyses. Multivariate Behavioral Research, 44, 259–280.CrossRefGoogle Scholar
  67. Sattora, A., & Bentler, P. M. (1999). A scaled difference Chi square test statistic for moment structure analysis. UCLA Statistics Series 260. Retrieved from [accessed on May 29, 2012].
  68. Schimmack, U., Diener, E., & Oishi, S. (2002a). Life-satisfaction is a momentary judgment and a stable personality characteristic: The use of chronically accessible and stable sources. Journal of Personality, 70, 345–384.CrossRefGoogle Scholar
  69. Schimmack, U., Radhakrishnan, P., Oishi, S., & Dzokoto, V. (2002b). Culture, personality, and subjective well-being: Integrating process models of life satisfaction. Journal of Personality and Social Psychology, 82, 582–593.CrossRefGoogle Scholar
  70. Schmitt, D. P., & Allik, J. (2005). Simultaneous administration of the Rosenberg Self-Esteem Scale in 53 nations: Exploring the universal and culture-specific features of global self-esteem. Journal of Personality and Social Psychology, 89, 623–642.CrossRefGoogle Scholar
  71. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  72. Sedikides, C. (1993). Assessment, enhancement, and verification determinants of the self-evaluation process. Journal of Personality and Social Psychology, 65, 317–338.CrossRefGoogle Scholar
  73. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton: Chapman & Hall/CRC.CrossRefGoogle Scholar
  74. Staudinger, U. M., Godde, B., Heidemeier, H., Kudielka-Wüst, B., Schömann, K., Stamov-Roßnagel, C., et al. (2011). Den demografischen Wandel meistern: Eine Frage der Passung. Ergebnisse des „demopass“ Projekts. [Meeting the challenges of demographic change: Matches and mismatches at the workplace. Results from the “demopass project”]. Bielefeld: W. Bertelsmann Verlag GmbH & Co. KG.Google Scholar
  75. Tait, M., Padgett, M. Y., & Baldwin, T. T. (1989). Job and life satisfaction: A reevaluation of the strength of the relationship and gender effects as a function of the date of the study. Journal of Applied Psychology, 74, 502–507.CrossRefGoogle Scholar
  76. Taylor, S., & Brown, J. (1988). Illusion and well-being: A social psychological perspective on mental health. Psychological Bulletin, 103, 193–210.CrossRefGoogle Scholar
  77. Taylor, S., & Brown, J. (1994). Positive illusions and well-being revisited: Separating fact from fiction. Psychological Bulletin, 116, 21–27.CrossRefGoogle Scholar
  78. Taylor, S. E., Neter, E., & Wayment, H. A. (1995). Self-evaluation processes. Personality and Social Psychology Bulletin, 21, 1278–1287.CrossRefGoogle Scholar
  79. Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18, 110–131.CrossRefGoogle Scholar
  80. Tueller, S. J., & Lubke, G. H. (2010). Evaluation of structural equation mixture models in a cross-sectional setting: Parameter estimates and correct class assignment. Structural Equation Modeling, 17, 165–192.CrossRefGoogle Scholar
  81. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  82. Vittorso, J., Biswas-Diener, R., & Diener, E. (2005). The divergent meanings of life satisfaction: Item response modeling of the satisfaction with life scale in Greenland and Norway. Social Indicators Research, 74, 327–348.CrossRefGoogle Scholar
  83. Wall, M. M., Guo, J., & Amemiya, Y. (2012). Mixture factor analysis for approximating a nonnormally distributed continuous latent factor with continuous and dichotomous observed variables. Multivariate Behavioral Research, 47, 276–313.CrossRefGoogle Scholar
  84. Walton, K. E., Ormel, J., & Krueger, R. F. (2011). The dimensional nature of externalizing behaviors in adolescence: Evidence from a direct comparison of categorical, dimensional, and hybrid models. Journal of Abnormal Child Psychology, 39, 553–561.CrossRefGoogle Scholar
  85. Warr, P., Cook, J., & Wall, T. (1979). Scales for the measurement of some work attitudes and aspects of psychological well-being. Journal of Occupational Psychology, 52, 129–148.CrossRefGoogle Scholar
  86. Watson, D., Clark, L., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative afftect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070.CrossRefGoogle Scholar
  87. Wolk, S. (1976). Situational constraint as a moderator of the locus of control-adjustment relationship. Journal of Consulting and Clinical Psychology, 44, 420–427.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Jacobs Center on Lifelong Learning and Institutional DevelopmentJacobs University BremenBremenGermany
  2. 2.Institute of PsychologyRWTH Aachen UniversityAachenGermany
  3. 3.Work and Organizational PsychologyUniversity of FreiburgFreiburgGermany

Personalised recommendations