Advertisement

Journal of Happiness Studies

, Volume 11, Issue 3, pp 335–352 | Cite as

Non-linearity, Complexity and Limited Measurement in the Relationship Between Satisfaction with Specific Life Domains and Satisfaction with Life as a Whole

  • Mònica GonzálezEmail author
  • Germà Coenders
  • Marc Saez
  • Ferran Casas
Research Paper

Abstract

In this article we defend that the adoption of a non-linear approach, theoretically framed on complexity theories can make some contribution to the bottom-up approach, which explains the levels of satisfaction with life as a whole through the combination of the levels of satisfaction in different life domains. Two approaches have been tested: (Rojas in J Happiness Stud 7:467–497, 2006) constant elasticity of substitution model and the model with quadratic terms and interaction effects (González et al. in Soc Indic Res 80:267–295, 2006; González et al. in Qual Quant 42:1–21, 2008). In order to prevent obtaining false non-linear relationships they have been analysed twice taking into account or not limited measurement of satisfaction with life as a whole. Results show that: (a) any of the two non-linear models fits better than the linear one; (b) any of the models failing to take into account limited measurement fits worse; (c) the non-linear model with quadratic terms and interaction effects fits better than Rojas’. The implications for the study of psychological well-being are discussed.

Keywords

Psychological well-being Adolescence Non-linearity Complexity theories Limited measurement 

Notes

Acknowledgments

Financial support for the data collection used in this article was provided by the Catalan Audiovisual Council. The comments made by Mariano Rojas have enormously contributed to the improving of the paper.

References

  1. Allegrini, P., Giuntoli, M., Grigolini, P., & West, B. J. (2004). From knowledge, knowability and the search for objective randomness to a new vision of complexity. Chaos, Solitons & Fractals, 20, 11–32.CrossRefGoogle Scholar
  2. Amemiya, T. (1984). Tobit models: A survey. Journal of Econometrics, 24(1–2), 3–61.CrossRefGoogle Scholar
  3. Andrews, F. M., & Withey, S. B. (1976). Social indicators of well-being: American’s perceptions of life quality. New York: Plenum Press.Google Scholar
  4. Batista-Foguet, J. M., & Saris, W. E. (1988). Reduction in variation in response function for social science variables: Job satisfaction. In W. E. Saris (Ed.), Variation in response functions: A source of measurement error in attitude research (pp. 178–198). Amsterdam: Sociometric Research Foundation.Google Scholar
  5. Casas, F. (1996). Bienestar social. Una introducción psicosocial. [Social well-being. A psychosocial introduction]. Barcelona: PPU.Google Scholar
  6. Casas, F., Madorell, L., Figuer, C., González, M., Malo, S., Garcia, M., et al. (2007). Preferències i expectatives dels adolescents relatives a la televisió a Catalunya [Preferences and expectations of adolescents in relation to the television in Catalonia]. Barcelona: Consell de l’Audiovisual de Catalunya [Catalan Audiovisual Council].Google Scholar
  7. Cha, K.-H. (2003). Subjective well-being among college students. Social Indicators Research, 62–63, 455–477.CrossRefGoogle Scholar
  8. Cohen, E. H. (2000). A facet theory approach to examining overall and life facet satisfaction relationships. Social Indicators Research, 51, 223–237.CrossRefGoogle Scholar
  9. Coveney, P., & Highfield, R. (1992). La flecha del tiempo. La organización del desorden [The arrow of time. The organisation of disorder]. Barcelona: Plaza & Janes Editores.Google Scholar
  10. Cummins, R. A. (1998). The second approximation to an international standard for life satisfaction. Social Indicators Research, 43, 307–334.CrossRefGoogle Scholar
  11. Cummins, R. A. (2002). Vale ComQol: Caveats to using the comprehensive quality of life scale: Welcome the personal wellbeing index. (http://www.deakin.edu.au/research/acqol/instruments/index.htm).
  12. Cummins, R. A. (2003). Normative life satisfaction: Measurement issues and a homeostatic model. Social Indicators Research, 64, 225–256.CrossRefGoogle Scholar
  13. Cummins, R. A., & Cahill, J. (2000). Avances en la comprensión de la calidad de vida subjetiva. [Advances in the comprehension of subjective quality of life]. Intervención Psicosocial, 9(2), 185–198.Google Scholar
  14. Cummins, R.A., & Gullone, E. (2000). Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. In Proceedings of the second international conference on quality of life in cities (pp. 74–93). Singapore. National University of Singapore.Google Scholar
  15. Cummins, R. A., & Nistico, H. (2002). Maintaining life satisfaction: The role of positive cognitive bias. Journal of Happiness Studies, 3, 37–69.CrossRefGoogle Scholar
  16. Cummins, R.A., Eckersley, R., van Pallant, J., Vugt, J., & Misajon, R. (2003). Developing a national index of subjective well-being: The Australian Unity Well-being Index. Social Indicators Research, 64, 159–190. Updated in: (http://www.deakin.edu.au/research/acqol/instruments/wellbeing_index.htm).
  17. Davern, M. T., Cummins, R. A., & Stokes, M. A. (2007). Subjective wellbeing as an affective-cognitive construct. Journal of Happiness Studies, 8, 429–449.CrossRefGoogle Scholar
  18. Diener, E. (1994). El bienestar subjetivo. [Subjective well-being]. Intervención Psicosocial, 3(8), 67–113.Google Scholar
  19. Diener, E., & Biswas-Diener, R. (2000). New directions in subjective well-being research: The cutting edge. Indian Journal of Clinical Psychology, 27, 21–33.Google Scholar
  20. Diener, E., & Lucas, R. E. (1992). Personality and subjective well-being. In D. Kahneman, E. Diener, & N. Schwartz (Eds.), Well-being: The foundations of hedonic psychology (pp. 213–243). New York: Rusell Sage Foundation.Google Scholar
  21. Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 2, 276–302.CrossRefGoogle Scholar
  22. Diener, E., Scollon, K. N., Oishi, S., Dzokoto, V., & Suh, E. M. (2000). Positivity and the construction of life satisfaction judgements: Global happiness is not the sum of its parts. Journal of Happiness Studies, 1, 159–176.CrossRefGoogle Scholar
  23. Easterlin, R. A. (2006). Life cycle happiness and its sources. Intersections of psychology, economics, and demography. Journal of Economic Psychology, 27, 463–482.CrossRefGoogle Scholar
  24. Eid, M., & Diener, E. (2004). Global judgments of subjective well-being: Situational variability and long-term stability. Social Indicators Research, 65, 245–277.CrossRefGoogle Scholar
  25. González, M. (2006). A non-linear approach to psychological well-being in adolescence: Some contributions from the complexity paradigm. Girona: Documenta Universitaria.Google Scholar
  26. González, M., Casas, F., & Coenders, G. (2006). A complexity approach to psychological well-being in adolescence: Major strengths and methodological issues. Social Indicators Research, 80, 267–295.CrossRefGoogle Scholar
  27. González, M., Coenders, G., & Casas, F. (2008). Using non-linear models for a complexity approach to psychological well-being. Quality & Quantity, 42, 1–21.CrossRefGoogle Scholar
  28. Greene, W. H. (2007). Econometric analysis (6th ed.). New Jersey: Prentice Hall.Google Scholar
  29. Hayles, N. K. (1998). La evolución del caos. El orden dentro del desorden en las ciencias contemporáneas [The evolution of chaos. Order within disorder in contemporary sciences]. Barcelona: Gedisa.Google Scholar
  30. Headey, B., Veenhoven, R., & Wearing, A. (1991). Top-down versus bottom-up theories of subjective well-being. Social Indicators Research, 24, 81–100.CrossRefGoogle Scholar
  31. Heckman, J. (1976). The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement, 5, 475–492.Google Scholar
  32. Hsieh, C.-M. (2002). Counting importance: The case of life satisfaction and relative domain importance. Social Indicators Research, 61, 227–240.CrossRefGoogle Scholar
  33. Irwin, J. R., & McClelland, G. (2001). Misleading heuristics and moderated multiple regression models. Journal of Marketing Research, 38, 100–109.CrossRefGoogle Scholar
  34. Kozma, A., Stone, S., & Stones, M. J. (1997). Los enfoques de top-down y bottom-up del bienestar subjetivo. [Top-down and bottom-up approaches to subjective well-being]. Intervención Psicosocial, 6(1), 77–90.Google Scholar
  35. Kozma, A., Stone, S., & Stones, M. J. (2000). Stability in components and predictors of subjective well-being (SWB): Implications for SWB structure. In E. Diener & D. Rahtz (Eds.), Advances in quality of life theory and research. Social indicators research series (Vol. 4, pp. 13–30). Dordrecht: Kluwer.Google Scholar
  36. Lance, C. E., Mallard, A. G., & Michalos, A. C. (1995). Tests of the causal directions of global-life facet satisfaction relationships. Social Indicators Research, 34, 69–92.CrossRefGoogle Scholar
  37. Leonardi, F., Spazzafumo, L., Marcellini, F., & Gagliardi, C. (1999). The top-down/bottom-up controversy from a constructionist approach. A method for measuring top-down effects applied to a sample of older people. Social Indicators Research, 48, 187–216.CrossRefGoogle Scholar
  38. Mallard, A. G., Lance, C. E., & Michalos, A. C. (1997). Culture as a moderator of overall life satisfaction–Life facet satisfaction relationships. Social Indicators Research, 40, 259–284.CrossRefGoogle Scholar
  39. Mathews, K. M., White, M. C., & Long, R. G. (1999). Why study the complexity sciences in the social sciences? Human Relations, 52(4), 439–462.Google Scholar
  40. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman and Hall.Google Scholar
  41. Michalos, A. (1995). Introducción a la teoría de las discrepancias múltiples (TDM). [An introduction to multiple discrepancies theory (MDT)]. Intervención Psicosocial, 4(11), 101–115.Google Scholar
  42. Munné, F. (1993). La teoría del caos y la psicología social. Un nuevo enfoque epistemológico para el comportamiento social. [Chaos theory and social psychology. A new epistemological approach to social behaviour]. In I. Fernández & F. Martínez (Eds.), Epistemología y procesos psicosociales básicos (pp. 37–48). Sevilla: Eudema.Google Scholar
  43. Munné, F. (1995). Las teorías de la complejidad y sus implicaciones en las ciencias del comportamiento. [Complexity theories and their implications for behavioural sciences]. Revista Interamericana de Psicología, 29(1), 1–12.Google Scholar
  44. Munné, F. (2004). El retorno de la complejidad y la nueva imagen del ser humano: hacia una psicologia compleja. [The return of complexity and the new image of the human-being: towards a complex psychology]. Revista Interamericana de Psicología, 38(1), 15–22.Google Scholar
  45. Riofrío, W. (2001). Complejidad o simplicidad? en busca de la unidad de la ciencia. [Complexity or simplicity? In search of the unity of science]. A Parte Rei: Revista de Filosofia, 16 July 2001. Electronic journal. http://serbal.pntic.mec.es/~cmunoz11/page25.html.
  46. Rojas, M. (2006). Life satisfaction and satisfaction in domains of life: Is it a simple relationship? Journal of Happiness Studies, 7, 467–497.CrossRefGoogle Scholar
  47. Rojas, M. (2008). Experienced poverty and income poverty in México: A subjective well-being approach. World Development, 36(6), 1078–1093.CrossRefGoogle Scholar
  48. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.CrossRefGoogle Scholar
  49. Saris, W. E. (2001). What influences subjective well-being in Russia? Journal of Happiness Studies, 2, 137–146.CrossRefGoogle Scholar
  50. Saris, W. E., van Wijk, T., & Scherpenzeel, A. (1998). Validity and reliability of subjective social indicators. The effect of different measures of association. Social Indicators Research, 45, 173–199.CrossRefGoogle Scholar
  51. Schnedler, W. (2005). Likelihood estimation for censored random vectors. Econometric Reviews, 24(2), 195–217.CrossRefGoogle Scholar
  52. Sirgy, M. J. (2000). The social psychology of quality of life: toward an integrated theory of happiness, life satisfaction, and subjective well-being. Third conference of the international society for quality of life studies. Girona, 20–22 July 2000.Google Scholar
  53. Sirgy, M. J. (2001). Handbook of quality-of-life research. An ethical marketing perspective. Social Indicators Research Series (Vol. 8). Dordrecht: Kluwer Academic Publishers.Google Scholar
  54. Tobin, J. (1958). Estimation for relationships with limited dependent variables. Econometrica, 26(1), 24–36.CrossRefGoogle Scholar
  55. van Praag, B. M. S., Frijters, P., & Ferrer-i-Carbonell, A. (2003). The anatomy pf subjective well-being. Journal of Economic Behaviour & Organization, 51, 29–49.CrossRefGoogle Scholar
  56. Veenhoven, R. (1994). El estudio de la satisfacción con la vida. [The study of life satisfaction]. Intervención Psicosocial, 3(9), 87–116.Google Scholar
  57. Wu, C.-H. (2008). Can we weight satisfaction score with importance ranks across life domains? Social Indicators Research, 86, 469–480.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mònica González
    • 1
    Email author
  • Germà Coenders
    • 1
  • Marc Saez
    • 1
  • Ferran Casas
    • 1
  1. 1.Faculty of Economics, Quality of Life Research InstituteUniversity of GironaGironaSpain

Personalised recommendations