Advertisement

Craving for Gambling Predicts Income-Generating Offenses: A Pathways Model of a Japanese Prison Population

  • Kenji YokotaniEmail author
  • Katsuhiro Tamura
  • Yusuke Kaneko
  • Eiichi Kamimura
Original Paper

Abstract

The links between gambling and criminal offenses have been frequently reported, but the pathways from gambling to a particular offense have not. Our study applied a pathways model to predict participants’ income-generating, drug-related, and violent offenses stemming from their craving for gambling. The participants were 332 male inmates in a Japanese local prison. They answered questionnaires on gambling behavior, alcohol addiction, Internet addiction, impulsivity, and psychopathy. Their official records with information on their current offense, sentence length, number of imprisonments, and length of education were also analyzed. The results show that 38.55% (n = 128) of the participants had a probable gambling disorder, a rate of problem gambling at least four times higher than that among the general Japanese population. Furthermore, their craving for gambling predicted their income-generating offenses, but not their drug-related and violent offenses. Their craving for gambling can thus be linked to their financial issues, rather than their emotional and impulsive issues. The pathways model explained the path not only from addiction/psychopathy to gambling, but also from gambling to committing an income-generating offense.

Keywords

Pathways model Japanese male prison inmates Income-generating offense Craving for gambling 

Notes

Acknowledgements

We would like to express our appreciation to Dr. Tai Kurosawa for his insightful feedbacks on our early draft.

Funding

The present study was funded by Japan Society for the Promotion of Science (19K11206).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Our study was approved by the board of a local prison and an ethics committee of a national university in Japan. Furthermore, all procedures were conducted in accordance with guidelines for studies involving human participants in the revised 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Abbott, M. W., & McKenna, B. G. (2005). Gambling and problem gambling among recently sentenced women in New Zealand prisons. Journal of Gambling Studies, 21(4), 559–581.  https://doi.org/10.1007/s10899-005-5563-5.CrossRefPubMedGoogle Scholar
  2. Abbott, M. W., McKenna, B. G., & Giles, L. C. (2005). Gambling and problem gambling among recently sentenced male prisoners in four New Zealand prisons. Journal of Gambling Studies, 21(4), 537–558.  https://doi.org/10.1007/s10899-005-5562-6.CrossRefPubMedGoogle Scholar
  3. Adolphe, A., Khatib, L., van Golde, C., Gainsbury, S. M., & Blaszczynski, A. (2018). Crime and gambling disorders: A systematic review. Journal of Gambling Studies.  https://doi.org/10.1007/s10899-018-9794-7.CrossRefGoogle Scholar
  4. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.CrossRefGoogle Scholar
  5. Arthur, D., Tong, W. L., Chen, C. P., Hing, A. Y., Sagara-Rosemeyer, M., Kua, E. H., et al. (2008). The validity and reliability of four measures of gambling behaviour in a sample of Singapore university students. Journal of Gambling Studies, 24(4), 451–462.  https://doi.org/10.1007/s10899-008-9103-y.CrossRefPubMedGoogle Scholar
  6. Auger, N., Lo, E., Cantinotti, M., & O’Loughlin, J. (2010). Impulsivity and socio-economic status interact to increase the risk of gambling onset among youth. Addiction, 105(12), 2176–2183.  https://doi.org/10.1111/j.1360-0443.2010.03100.x.CrossRefPubMedGoogle Scholar
  7. Back, K.-J., Williams, R. J., & Lee, C.-K. (2015). Reliability and validity of three instruments (DSM-IV, CPGI, and PPGM) in the assessment of problem gambling in South Korea. Journal of Gambling Studies, 31(3), 775–786.  https://doi.org/10.1007/s10899-014-9442-9.CrossRefPubMedGoogle Scholar
  8. Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97(5), 487–499.  https://doi.org/10.1046/j.1360-0443.2002.00015.x.CrossRefPubMedGoogle Scholar
  9. Bush, K., Kivlahan, D. R., McDonell, M. B., Fihn, S. D., & Bradley, K. A. (1998). The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. Archives of Internal Medicine, 158(16), 1789–1795.  https://doi.org/10.1001/archinte.158.16.1789.CrossRefPubMedGoogle Scholar
  10. Byun, S., Ruffini, C., Mills, J. E., Douglas, A. C., Niang, M., Stepchenkova, S., et al. (2008). Internet addiction: Metasynthesis of 1996–2006 quantitative research. CyberPsychology and Behavior, 12(2), 203–207.  https://doi.org/10.1089/cpb.2008.0102.CrossRefGoogle Scholar
  11. Chang, M. K., & Man Law, S. P. (2008). Factor structure for Young’s internet addiction test: A confirmatory study. Computers in Human Behavior, 24(6), 2597–2619.  https://doi.org/10.1016/j.chb.2008.03.001.CrossRefGoogle Scholar
  12. Cuadrado, M., & Lieberman, L. (2012). Use of a short gambling screen with an arrestee population: A feasibility study. Journal of Gambling Studies, 28(2), 193–205.  https://doi.org/10.1007/s10899-011-9253-1.CrossRefPubMedGoogle Scholar
  13. de Meneses-Gaya, C., Waldo Zuardi, A., Loureiro, S. R., & Crippa, J. A. S. (2009). Alcohol use disorders identification test (AUDIT): An updated systematic review of psychometric properties. Psychology and Neuroscience, 2(1), 83–97.CrossRefGoogle Scholar
  14. Diamantopoulos, A., & Siguaw, J. A. (2013). Introducing LISREL: A guide for the uninitiated. Thousand Oaks: SAGE.Google Scholar
  15. Durose, M. R., Cooper, A. D., & Snyder, H. N. (2014). Recidivism of prisoners released in 30 states in 2005: Patterns from 2005 to 2010. Washington, DC: Bureau of Justice Statistics.Google Scholar
  16. Godet-Mardirossian, H., Jehel, L., & Falissard, B. (2011). Suicidality in male prisoners: Influence of childhood adversity mediated by dimensions of personality. Journal of Forensic Sciences, 56(4), 942–949.  https://doi.org/10.1111/j.1556-4029.2011.01754.x.CrossRefPubMedGoogle Scholar
  17. Griffiths, M., & Wood, R. T. A. (2000). Risk factors in adolescence: The case of gambling, videogame playing, and the Internet. Journal of Gambling Studies, 16(2), 199–225.  https://doi.org/10.1023/A:1009433014881.CrossRefPubMedGoogle Scholar
  18. Hiro, H., & Shima, S. (1996). Availability of the alcohol use disorders identification test (AUDIT) for a complete health examination in Japan. Japanese Journal of Alcohol Studies and Drug Dependence, 31(5), 437–450.PubMedGoogle Scholar
  19. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6, 53–60.Google Scholar
  20. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.  https://doi.org/10.1080/10705519909540118.CrossRefGoogle Scholar
  21. Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14(1), 6–23.  https://doi.org/10.1037/a0014694.CrossRefPubMedGoogle Scholar
  22. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.Google Scholar
  23. Kim, S. W., Grant, J. E., Potenza, M. N., Blanco, C., & Hollander, E. (2009). The Gambling Symptom Assessment Scale (G-SAS): A reliability and validity study. Psychiatry Research, 166(1), 76–84.  https://doi.org/10.1016/j.psychres.2007.11.008.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ko, C., Yen, J.-Y., Yen, C., Chen, C., Weng, C., & Chen, C. (2008). The association between internet addiction and problematic alcohol use in adolescents: The problem behavior model. CyberPsychology and Behavior, 11(5), 571–576.  https://doi.org/10.1089/cpb.2007.0199.CrossRefPubMedGoogle Scholar
  25. Kuoppamäki, S.-M., Kääriäinen, J., & Lind, K. (2014). Examining gambling-related crime reports in the national Finnish police register. Journal of Gambling Studies, 30(4), 967–983.  https://doi.org/10.1007/s10899-013-9393-6.CrossRefPubMedGoogle Scholar
  26. Lai, C.-M., Mak, K.-K., Cheng, C., Watanabe, H., Nomachi, S., Bahar, N., et al. (2015). Measurement invariance of the internet addiction test among Hong Kong, Japanese, and Malaysian adolescents. Cyberpsychology, Behavior, and Social Networking, 18(10), 609–617.  https://doi.org/10.1089/cyber.2015.0069.CrossRefGoogle Scholar
  27. Laursen, B., Plauborg, R., Ekholm, O., Larsen, C. V. L., & Juel, K. (2016). Problem gambling associated with violent and criminal behaviour: A Danish population-based survey and register study. Journal of Gambling Studies, 32(1), 25–34.  https://doi.org/10.1007/s10899-015-9536-z.CrossRefPubMedGoogle Scholar
  28. Ledgerwood, D. M., & Petry, N. M. (2010). Subtyping pathological gamblers based on impulsivity, depression, and anxiety. Psychology of Addictive Behaviors, 24(4), 680–688.  https://doi.org/10.1037/a0019906.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. The American Journal of Psychiatry, 144(9), 1184–1188.  https://doi.org/10.1176/ajp.144.9.1184.CrossRefPubMedGoogle Scholar
  30. Levenson, M. R., Kiehl, K. A., & Fitzpatrick, C. M. (1995). Assessing psychopathic attributes in a noninstitutionalized population. Journal of Personality and Social Psychology, 68(1), 151–158.CrossRefPubMedGoogle Scholar
  31. Lobo, D. S. S., Quilty, L. C., Martins, S. S., Tavares, H., Vallada, H., Kennedy, J. L., et al. (2014). Pathological gambling subtypes: A comparison of treatment-seeking and non-treatment-seeking samples from Brazil and Canada. Addictive Behaviors, 39(7), 1172–1175.  https://doi.org/10.1016/j.addbeh.2014.03.006.CrossRefPubMedGoogle Scholar
  32. Lorains, F. K., Cowlishaw, S., & Thomas, S. A. (2011). Prevalence of comorbid disorders in problem and pathological gambling: Systematic review and meta-analysis of population surveys. Addiction, 106(3), 490–498.  https://doi.org/10.1111/j.1360-0443.2010.03300.x.CrossRefPubMedGoogle Scholar
  33. May-Chahal, C., Humphreys, L., Clifton, A., Francis, B., & Reith, G. (2017). Gambling harm and crime careers. Journal of Gambling Studies, 33(1), 65–84.  https://doi.org/10.1007/s10899-016-9612-z.CrossRefPubMedGoogle Scholar
  34. Meyer, G., & Stadler, M. A. (1999). Criminal behavior associated with pathological gambling. Journal of Gambling Studies, 15(1), 29–43.  https://doi.org/10.1023/A:1023015028901.CrossRefPubMedGoogle Scholar
  35. Milosevic, A., & Ledgerwood, D. M. (2010). The subtyping of pathological gambling: A comprehensive review. Clinical Psychology Review, 30(8), 988–998.  https://doi.org/10.1016/j.cpr.2010.06.013.CrossRefPubMedGoogle Scholar
  36. Mishra, S., Lalumière, M. L., Morgan, M., & Williams, R. J. (2011). An examination of the relationship between gambling and antisocial behavior. Journal of Gambling Studies, 27(3), 409–426.  https://doi.org/10.1007/s10899-010-9217-x.CrossRefPubMedGoogle Scholar
  37. Moon, M., Lister, J. J., Milosevic, A., & Ledgerwood, D. M. (2017). Subtyping non-treatment-seeking problem gamblers using the pathways model. Journal of Gambling Studies, 33(3), 841–853.  https://doi.org/10.1007/s10899-016-9658-y.CrossRefPubMedGoogle Scholar
  38. Nower, L., & Blaszczynski, A. (2017). Development and validation of the Gambling Pathways Questionnaire (GPQ). Psychology of Addictive Behaviors, 31(1), 95–109.  https://doi.org/10.1037/adb0000234.CrossRefPubMedGoogle Scholar
  39. Nower, L., Martins, S. S., Lin, K.-H., & Blanco, C. (2013). Subtypes of disordered gamblers: Results from the national epidemiologic survey on alcohol and related conditions. Addiction, 108(4), 789–798.  https://doi.org/10.1111/add.12012.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ohnishi, M., Ohkawa, C., Harashima, M., Saito, S., Deguchi, Y., & Ibe, F. (1996). Capas nouryoku kensa 1·2 no saikentou (review for performance test with capas). Chuo Kenkyusyo Kiyou (Chuo Acad. Res. Inst./Jpn. Correct. Assoc. Chuo Res. Cent.), 6, 123–132.Google Scholar
  41. Osumi, T., Nakao, T., Kasuya, Y., Shinoda, J., Yamada, J., & Ohira, H. (2012). Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population. Journal of Affective Disorders, 142(1), 331–338.  https://doi.org/10.1016/j.jad.2012.05.012.CrossRefPubMedGoogle Scholar
  42. Pantalon, M. V., Maciejewski, P. K., Desai, R. A., & Potenza, M. N. (2008). Excitement-seeking gambling in a nationally representative sample of recreational gamblers. Journal of Gambling Studies, 24(1), 63–78.  https://doi.org/10.1007/s10899-007-9075-3.CrossRefPubMedGoogle Scholar
  43. Pastwa-Wojciechowska, B. (2011). The relationship of pathological gambling to criminality behavior in a sample of Polish male offenders. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 17(11), 669–675.CrossRefGoogle Scholar
  44. Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the barratt impulsiveness scale. Journal of Clinical Psychology, 51(6), 768–774.  https://doi.org/10.1002/1097-4679(199511)51:6%3c768:AID-JCLP2270510607%3e3.0.CO;2-1.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Potenza, M. N. (2008). The neurobiology of pathological gambling and drug addiction: An overview and new findings. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1507), 3181–3189.  https://doi.org/10.1098/rstb.2008.0100.CrossRefGoogle Scholar
  46. Preston, D. L., McAvoy, S., Saunders, C., Gillam, L., Saied, A., & Turner, N. E. (2012). Problem gambling and mental health comorbidity in Canadian federal offenders. Criminal Justice and Behavior, 39(10), 1373–1388.  https://doi.org/10.1177/0093854812448786.CrossRefGoogle Scholar
  47. Reimers, S., Maylor, E. A., Stewart, N., & Chater, N. (2009). Associations between a one-shot delay discounting measure and age, income, education and real-world impulsive behavior. Personality and Individual Differences, 47(8), 973–978.  https://doi.org/10.1016/j.paid.2009.07.026.CrossRefGoogle Scholar
  48. Saito, S. (1996). Compulsive/pathological gambling and its treatment; A introduction of a gambling screen (SOGS–Modified Japanese Version). Alcohol Dependence and Addiction, 13(2), 102–109.Google Scholar
  49. Sellbom, M. (2011). Elaborating on the construct validity of the Levenson self-report psychopathy scale in incarcerated and non-incarcerated samples. Law and Human Behavior, 35(6), 440–451.  https://doi.org/10.1007/s10979-010-9249-x.CrossRefPubMedGoogle Scholar
  50. Shevlin, M., & Miles, J. N. V. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1), 85–90.  https://doi.org/10.1016/S0191-8869(98)00055-5.CrossRefGoogle Scholar
  51. Shimizu, H. (2016). An introduction to the statistical free software HAD: Suggestions to improve teaching, learning and practice data analysis. Journal of Media, Information and Communication, 1, 59–73.Google Scholar
  52. Skeem, J., Johansson, P., Andershed, H., Kerr, M., & Louden, J. E. (2007). Two subtypes of psychopathic violent offenders that parallel primary and secondary variants. Journal of Abnormal Psychology, 116(2), 395–409.  https://doi.org/10.1037/0021-843X.116.2.395.CrossRefPubMedGoogle Scholar
  53. Someya, T., Sakado, K., Seki, T., Kojima, M., Reist, C., Tang, S. W., et al. (2001). The Japanese version of the Barratt Impulsiveness Scale, 11th version (BIS-11): Its reliability and validity. Psychiatry and Clinical Neurosciences, 55(2), 111–114.  https://doi.org/10.1046/j.1440-1819.2001.00796.x.CrossRefPubMedGoogle Scholar
  54. Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S. L., Anderson, N. E., & Patton, J. H. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences, 47(5), 385–395.  https://doi.org/10.1016/j.paid.2009.04.008.CrossRefGoogle Scholar
  55. Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42(5), 893–898.  https://doi.org/10.1016/j.paid.2006.09.017.CrossRefGoogle Scholar
  56. Stewart, S. H., Zack, M., Collins, P., & Klein, R. M. (2008). Subtyping pathological gamblers on the basis of affective motivations for gambling: Relations to gambling problems, drinking problems, and affective motivations for drinking. Psychology of Addictive Behaviors, 22(2), 257–268.  https://doi.org/10.1037/0893-164X.22.2.257.CrossRefPubMedGoogle Scholar
  57. Stinchfield, R. (2002). Reliability, validity, and classification accuracy of the South Oaks Gambling Screen (SOGS). Addictive Behaviors, 27(1), 1–19.  https://doi.org/10.1016/S0306-4603(00)00158-1.CrossRefPubMedGoogle Scholar
  58. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn and Bacon/Pearson Education.Google Scholar
  59. Takeuchi, H., Kawada, R., Tsurumi, K., Yokoyama, N., Takemura, A., Murao, T., et al. (2016). Heterogeneity of loss aversion in pathological gambling. Journal of Gambling Studies, 32(4), 1143–1154.  https://doi.org/10.1007/s10899-015-9587-1.CrossRefPubMedGoogle Scholar
  60. Tang, C. S., Wu, A. M. S., Tang, J. Y. C., & Yan, E. C. W. (2010). Reliability, validity, and cut scores of the South Oaks Gambling Screen (SOGS) for Chinese. Journal of Gambling Studies, 26(1), 145–158.  https://doi.org/10.1007/s10899-009-9147-7.CrossRefPubMedGoogle Scholar
  61. Templer, D. I., Kaiser, G., & Siscoe, K. (1993). Correlates of pathological gambling propensity in prison inmates. Comprehensive Psychiatry, 34(5), 347–351.  https://doi.org/10.1016/0010-440X(93)90022-V.CrossRefPubMedGoogle Scholar
  62. Tessényi, J., & Kovács, P. (2016). A study of the connection between gambling and crime in Hungarian prisons. International Journal of Law and Psychiatry, 47, 176–180.  https://doi.org/10.1016/j.ijlp.2016.04.004.CrossRefPubMedGoogle Scholar
  63. Toyama, T., Nakayama, H., Takimura, T., Yoshimura, A., Maesato, H., Matsushita, S., et al. (2014). Prevalence of pathological gambling in Japan. Alcohol and Alcoholism, 49(suppl_1), 17.  https://doi.org/10.1093/alcalc/agu052.75.CrossRefGoogle Scholar
  64. Turner, N. E., Jain, U., Spence, W., & Zangeneh, M. (2008). Pathways to pathological gambling: Component analysis of bariables related to pathological gambling. International Gambling Studies, 8(3), 281–298.  https://doi.org/10.1080/14459790802405905.CrossRefGoogle Scholar
  65. Turner, N. E., Preston, D. L., McAvoy, S., & Gillam, L. (2013). Problem gambling inside and out: The assessment of community and institutional problem gambling in the Canadian correctional system. Journal of Gambling Studies, 29(3), 435–451.  https://doi.org/10.1007/s10899-012-9321-1.CrossRefPubMedGoogle Scholar
  66. Turner, N. E., Preston, D. L., Saunders, C., McAvoy, S., & Jain, U. (2009). The relationship of problem gambling to criminal behavior in a sample of Canadian male federal offenders. Journal of Gambling Studies, 25(2), 153–169.  https://doi.org/10.1007/s10899-009-9124-1.CrossRefPubMedGoogle Scholar
  67. Turner, N. E., Stinchfield, R., McCready, J., McAvoy, S., & Ferentzy, P. (2016). Endorsement of criminal behavior amongst offenders: Implications for DSM-5 gambling disorder. Journal of Gambling Studies, 32(1), 35–45.  https://doi.org/10.1007/s10899-015-9540-3.CrossRefPubMedGoogle Scholar
  68. Valleur, M., Codina, I., Vénisse, J.-L., Romo, L., Magalon, D., Fatséas, M., et al. (2016). Towards a validation of the three pathways model of pathological gambling. Journal of Gambling Studies, 32(2), 757–771.  https://doi.org/10.1007/s10899-015-9545-y.CrossRefPubMedGoogle Scholar
  69. West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. Handbook of structural equation modeling (pp. 209–231). New York, NY: The Guilford Press.Google Scholar
  70. Wheaton, B., Muthén, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. Sociological Methodology, 8, 84–136.  https://doi.org/10.2307/270754.CrossRefGoogle Scholar
  71. Wheeler, S. A., Round, D. K., Sarre, R., & O’Neil, M. (2007). The influence of gaming expenditure on crime rates in South Australia: A local area empirical investigation. Journal of Gambling Studies, 24(1), 1.  https://doi.org/10.1007/s10899-007-9070-8.CrossRefPubMedGoogle Scholar
  72. Yamamoto, Y., & Brinton, M. C. (2010). Cultural capital in East Asian educational systems: The case of Japan. Sociology of Education, 83(1), 67–83.  https://doi.org/10.1177/0038040709356567.CrossRefGoogle Scholar
  73. Yasuki, M., Fujiyabu, K., Kudo, H., Ibe, F., Yamaguchi, Y., & Asano, C. (2003). Capas nouryoku kensa 1·2 no saikentou (review for performance test with capas). Chuo Kenkyusyo Kiyou (Chuo Acad. Res. Inst./Jpn. Correct. Assoc. Chuo Res. Cent.), 13, 101–111.Google Scholar
  74. Yokomitsu, K., & Kamimura, E. (2019). Factor structure and validation of the Japanese version of the Gambling Symptom Assessment Scale (GSAS-J). Journal of Gambling Issues, 41(0). http://jgi.camh.net/index.php/jgi/article/view/4037. Accessed 15 March 2019
  75. Yokotani, K., & Tamura, K. (2015). Effects of personalized feedback interventions on drug-related reoffending: A Pilot Study. Prevention Science, 16(8), 1169–1176.  https://doi.org/10.1007/s11121-015-0571-x.CrossRefPubMedGoogle Scholar
  76. Yokotani, K., & Tamura, K. (2017). The effect of a social reintegration (parole) program on drug-related prison inmates in Japan: A 4-year prospective study. Asian Journal of Criminology, 12(2), 127–141.  https://doi.org/10.1007/s11417-016-9235-4.CrossRefGoogle Scholar
  77. Young, K. S. (1998). Caught in the net: How to recognize the signs of internet addiction–and a winning strategy for recovery. London: Wiley.Google Scholar
  78. Zurhold, H., Verthein, U., & Kalke, J. (2014). Prevalence of problem gambling among the prison population in Hamburg. Germany. Journal of Gambling Studies, 30(2), 309–319.  https://doi.org/10.1007/s10899-013-9361-1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushima-shiJapan
  2. 2.General Affairs SectionNiigata Juvenile Classification HomeNiigata CityJapan
  3. 3.Department of EducationNiigata PrisonNiigata CityJapan
  4. 4.Graduate School of Modern Society and CultureNiigata UniversityNiigata CityJapan

Personalised recommendations