Web-Based Intervention and Email-Counseling for Problem Gamblers: Results of a Randomized Controlled Trial

  • Benjamin JonasEmail author
  • Fabian Leuschner
  • Anna Eiling
  • Christine Schoelen
  • Renate Soellner
  • Peter Tossmann
Original Paper


Web-based interventions have the potential to reduce the treatment gap for problem gambling. In the past years, several web-based help options were made available to the public. However, only few studies were conducted to test their effects. This study investigated the efficacy of two interventions for problem gamblers provided online by the German Federal Center for Health Education (BZgA). The first intervention is the guided program “Check Out” (CO), the second is email counselling (EC). A web-based randomized controlled trial with follow-up surveys after 3, 6 and 12 months was conducted. Participants were allocated to CO, to EC or to a waitlist (WL). Outcomes were the degree of problem gambling according to the Problem Gambling Severity Index, the number of days gambled in past 30 days, the highest stake during the past 30 days and the subjective well-being (WHO-5). 167 individuals were included in the trial. In comparison to the WL at the 3 months follow-up, participants of CO showed significant improvements with moderate to strong effect sizes in all outcomes. Strongest effects were found in the problem gambling severity (d = 0.91; p = 0.023), followed by the well-being (d = 0.70; p = 0.011), the gambling days (d = 0.59; p = 0.001) and the highest stake (d = 0.55; p = 0.012). Improvements were sustained until last follow-up. Compared to the WL, users of EC had beneficiary results in the problem gambling severity (d = 0.74; p = 0.022). No significant effect differences were found between CO and EC. However, according to process evaluation, users of CO reported a significantly stronger working alliance than users of EC (d = 0.70; p = 0.019) and used the intervention considerably longer (d = 0.84; p = 0.004). CO helps treatment-seeking individuals to sustainably reduce their gambling behavior and to increase their general well-being. Compared to EC, CO seems a better support option, since its effects include a wider range of outcomes. Possible reasons are the more engaging program structure and elements of CO, as well as the closer interaction between client and counselor.


Pathological gambling Problem gambling Gambling disorder Counseling Email Prevention 



The authors thank all counselors of CDS involved in the study: Ilka Andersen, Evi Schunack, Ingrid Lechner and Reglinde Schöbl.

Authors’ Contribution

Benjamin Jonas conceived and coordinated the study, supervised the data collection and conducted the analysis. Benjamin Jonas, Fabian Leuschner, Anna Eiling, Christine Schoelen, Renate Soellner and Peter Tossmann drafted the manuscript. All authors approved the final version of the manuscript.


The study was funded by the BZgA on behalf of the German Federal Ministry of Health.

Compliance with Ethical Standards

Conflict of interest

Benjamin Jonas, Fabian Leuschner, Anna Eiling and Peter Tossmann work for Delphi Gesellschaft, which developed “Check Out” on behalf of the Federal Centre for Health Education (BZgA).

Ethical Approval

All procedures performed in this study were approved by the ethics committee of the Department of Applied Human Sciences at the University of Magdeburg-Stendal, Germany, (reference number 4973-60) and were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Before the study, individuals were comprehensively informed about the study. Individuals willing to participate gave their informed consent by checking an “I agree to participate” checkbox (see manuscript for details).


  1. Andersson, G., Titov, N., Dear, B. F., Rozental, A., & Carlbring, P. (2019). Internet-delivered psychological treatments: From innovation to implementation. World Psychiatry: Official Journal Of The World Psychiatric Association (WPA), 18(1), 20–28. Scholar
  2. Bischof, A., Meyer, C., Bischof, G., Kastirke, N., John, U., & Rumpf, H.-J. (2012). Inanspruchnahme von Hilfen bei Pathologischem Glücksspielen. Befunde der PAGE-Studie. Sucht, 58(6), 369–377. Scholar
  3. Blankers, M., Koeter, M. W. J., & Schippers, G. M. (2011). Internet therapy versus internet self-help versus no treatment for problematic alcohol use: A randomized controlled trial. Journal of Consulting and Clinical Psychology, 79(3), 330–341. Scholar
  4. Brähler, E., Mühlan, H., Albani, C., & Schmidt, S. (2007). Teststatistische Prüfung und Normierung der deutschen Versionen des EUROHIS-QOL Lebensqualität-Index und des WHO-5 Wohlbefindens-Index. Diagnostica, 53(2), 83–96. Scholar
  5. Bücker, L., Bierbrodt, J., Hand, I., Wittekind, C., & Moritz, S. (2018). Effects of a depression-focused internet intervention in slot machine gamblers: A randomized controlled trial. PLoS ONE, 13(6), 1–22. Scholar
  6. Calado, F., & Griffiths, M. D. (2016). Problem gambling worldwide: An update and systematic review of empirical research (2000–2015). Journal of Behavioral Addictions, 5(4), 592–613. Scholar
  7. Carlbring, P., Degerman, N., Jonsson, J., & Andersson, G. (2012). Internet-based treatment of pathological gambling with a three-year follow-up. Cognitive Behaviour Therapy, 41(4), 321–334. Scholar
  8. Carlbring, P., & Smit, F. (2008). Randomized trial of internet-delivered self-help with telephone support for pathological gamblers. Journal of Consulting and Clinical Psychology, 76(6), 1090–1094. Scholar
  9. Casey, L. M., Oei, T. P. S., Raylu, N., Horrigan, K., Day, J., Ireland, M., et al. (2017). Internet-based delivery of cognitive behaviour therapy compared to monitoring, feedback and support for problem gambling: A randomised controlled trial. Journal of Gambling Studies, 33(3), 993–1010. Scholar
  10. Castrén, S., Pankakoski, M., Tamminen, M., Lipsanen, J., Ladouceur, R., & Lahti, T. (2013). Internet-based CBT intervention for gamblers in Finland: Experiences from the field. Scandinavian Journal of Psychology, 54(3), 230–235. Scholar
  11. Danielsson, A.-K., Eriksson, A.-K., & Allebeck, P. (2014). Technology-based support via telephone or web: A systematic review of the effects on smoking, alcohol use and gambling. Addictive Behaviors, 39(12), 1846–1868. Scholar
  12. de Shazer, S., Dolan, Y., Korman, H., McCollum, E., Trepper, T., & Berg, I. K. (2007). More than miracles: The state of the art of solution-focused brief therapy. New York: Haworth Press. ISBN 978-0-7890-3398-7.Google Scholar
  13. Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA: Journal of the American Medical Association, 252(14), 1905–1907. Scholar
  14. Federal Statistical Office of Germany (2019). Absolventen/Abgänger: Bundesländer, Schuljahr, Geschlecht, Schulabschlüsse, Schulart.;sid=07CEBA3365C47537CDB3755A1A5DBE32.GO_2_2?operation=ergebnistabelleUmfang&levelindex=3&levelid=1550058320053&downloadname=21111-0015. Accessed 13 Feb 2019.
  15. Ferris, J., & Wynne, H. (2001). The Canadian problem gambling index: Final report. Ottawa: Canadian Centre on Substance Abuse.Google Scholar
  16. Furukawa, T. A., Noma, H., Caldwell, D. M., Honyashiki, M., Shinohara, K., Imai, H., et al. (2014). Waiting list may be a nocebo condition in psychotherapy trials: A contribution from network meta-analysis. Acta Psychiatrica Scandinavica, 130(3), 181–192. Scholar
  17. Giroux, I., Goulet, A., Mercier, J., Jacques, C., & Bouchard, S. (2017). Online and mobile interventions for problem gambling, alcohol, and drugs: A systematic review. Frontiers in Psychology. Scholar
  18. Haß, W., & Lang, P. (2016). Glücksspielverhalten und Glücksspielsucht in Deutschland. Ergebnisse des Surveys 2015 und Trends. Forschungsbericht der BZgA. Köln: Bundeszentrale für gesundheitliche Aufklärung.Google Scholar
  19. Horvath, A. O., & Greenberg, L. S. (1989). Development and validation of the working alliance inventory. Journal of Counseling Psychology, 36(2), 223–233. Scholar
  20. Institut für Therapieforschung (2019). Deutsche Suchthilfestatistik 2017. Tabellenband für Ambulante Beratungs- und/oder Behandlungsstellen. 1 Zugänge Beender ohne Einmalkontakte. Tables 4.02 & 7.18. Accessed 13 Feb 2019.
  21. Jonas, B., Tensil, M. D., Tossmann, P., & Strüber, E. (2018). Effects of treatment length and chat-based counseling in a web-based intervention for Cannabis users: Randomized factorial trial. Journal of Medical Internet Research, 20(5), e166. Scholar
  22. Kanfer, F. H. (1986). Implications of a self-regulation model of therapy for treatment of addictive behaviors. In W. R. Miller & N. Heather (Eds.), Treating addictive behaviors: Processes of change (pp. 29–47). New York: Plenum Press.Google Scholar
  23. Langham, E., Thorne, H., Browne, M., Donaldson, P., Rose, J., & Rockloff, M. (2016). Understanding gambling related harm: A proposed definition, conceptual framework, and taxonomy of harms. BMC Public Health, 16(1), 1.Google Scholar
  24. Larsen, D. L., Attkisson, C. C., Hargreaves, W. A., & Nguyen, T. D. (1979). Assessment of client/patient satisfaction: Development of a general scale. Evaluation and Program Planning, 2(3), 197–207. Scholar
  25. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks gambling screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.CrossRefGoogle Scholar
  26. Meyer, G., & Bachmann, M. (2017). Spielsucht—Ursachen und Therapie. Berlin: Springer.CrossRefGoogle Scholar
  27. Meyer, G., Häfeli, J., Mörsen, C., & Fiebig, M. (2010). Die Einschätzung des Gefährdungspotentials von Glücksspielen. Ergebnisse einer Delphi-Studie und empirischen Validierung der Beurteilungsmerkmale. Sucht, 56(6), 405–414. Scholar
  28. Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364–386. Scholar
  29. Orford, J., Wardle, H., Griffiths, M., Sproston, K., & Erens, B. (2010). PGSI and DSM-IV in the 2007 British gambling prevalence survey: Reliability, item response, factor structure and inter-scale agreement. International Gambling Studies, 10(1), 31–44. Scholar
  30. Quaglio, G., Schellekens, A., Blankers, M., Hoch, E., Karapiperis, T., Esposito, G., et al. (2017). A brief outline of the use of new technologies for treating substance use disorders in the European union. European Addiction Research, 23(4), 177–181. Scholar
  31. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 13 Feb 2019.
  32. Rockloff, M. J., & Schofield, G. (2004). Factor analysis of barriers to treatment for problem gambling. Journal of Gambling Studies, 20(2), 121–126. Scholar
  33. Rodda, S., Lubman, D. I., Dowling, N. A., Bough, A., & Jackson, A. C. (2013). Web-based counseling for problem gambling: Exploring motivations and recommendations. Journal of Medical Internet Research, 15(5), 162–171. Scholar
  34. Rogers, M. A., Lemmen, K., Kramer, R., Mann, J., & Chopra, V. (2017). Internet-delivered health interventions that work: Systematic review of meta-analyses and evaluation of website availability. Journal of Medical Internet Research, 19(3), e90. Scholar
  35. Rollnick, S., & Miller, W. R. (1991). Motivational interviewing: Preparing people to change addictive behavior. ISBN: 0898625661.Google Scholar
  36. Ruwaard, J., Lange, A., Bouwman, M., Broeksteeg, J., & Schrieken, B. (2007). E-mailed standardized cognitive behavioural treatment of work-related stress: A randomized controlled trial. Cognitive Behaviour Therapy, 36(3), 179–192. Scholar
  37. Sassen, M., Kraus, L., Bühringer, G., Pabst, A., Piontek, D., & Taqi, Z. (2011). Gambling among adults in Germany: Prevalence, disorder and risk factors. Sucht: Zeitschrift Für Wissenschaft Und Praxis, 57(4), 249–257. Scholar
  38. Schmidt, J., Nübling, R., Lamprecht, F., & Wittmann, W. W. (1994). Patientenzufriedenheit am Ende psychosomatischer Reha-Behandlungen. Zusammenhänge mit Behandlungs- und Ergebnisvariablen und prognostische Bedeutung. In F. Lamprecht & R. Johnen (Eds.), Salutogenese. Ein neues Konzept in der Psychosomatik? Kongreßband der 40. Jahrestagung des Deutschen Kollegiums für Psychosomatische Medizin (pp. 271–283). Frankfurt: VAS Verlag für Akademische Schriften. ISBN 978-3-88864-064-3.Google Scholar
  39. Stinchfield, R., Govoni, R., & Frisch, G. (2007). A review of screening instruments for problem and pathological gambling. In G. Smith, D. Hodgins, & R. Williams (Eds.), Research and measurement issues in gambling research (pp. 179–213). Burlington: Elsevier Press.Google Scholar
  40. Suler, J. (2004). The online disinhibition effect. Cyberpsychology & Behavior, 7, 321–326.CrossRefGoogle Scholar
  41. Suurvali, H., Cordingley, J., Hodgins, D. C., & Cunningham, J. (2009). Barriers to seeking help for gambling problems: A review of the empirical literature. Journal of Gambling Studies, 25(3), 407–424. Scholar
  42. Tait, R. J., Spijkerman, R., & Riper, H. (2013). Internet and computer based interventions for cannabis use: A meta-analysis. Drug and Alcohol Dependence, 133(2), 295–304. Scholar
  43. Vernmark, K., Lenndin, J., Bjärehed, J., Carlsson, M., Karlsson, J., Öberg, J., et al. (2010). Internet administered guided self-help versus individualized e-mail therapy: A randomized trial of two versions of CBT for major depression. Behaviour Research and Therapy, 48(5), 368–376. Scholar
  44. Wilmers, F., Munder, T., Leonhart, R., Herzog, T., Plassmann, R., Barth, J., et al. (2008). Die deutschsprachige version des working alliance inventory—short revised (WAI-SR)—Ein schulenübergreifendes, ökonomisches und empirisch validiertes Instrument zur Erfassung der therapeutischen Allianz. Klinische Diagnostik Und Evaluation, 1(3), 343–358. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Delphi - Gesellschaft für Forschung, Beratung und Projektentwicklung mbHBerlinGermany
  2. 2.Federal Centre for Health Education (BZgA)CologneGermany
  3. 3.University of HildesheimHildesheimGermany

Personalised recommendations