Journal of Gambling Studies

, Volume 32, Issue 3, pp 889–904 | Cite as

Usage of a Responsible Gambling Tool: A Descriptive Analysis and Latent Class Analysis of User Behavior

  • David ForsströmEmail author
  • Hugo Hesser
  • Per Carlbring
Original Paper


Gambling is a common pastime around the world. Most gamblers can engage in gambling activities without negative consequences, but some run the risk of developing an excessive gambling pattern. Excessive gambling has severe negative economic and psychological consequences, which makes the development of responsible gambling strategies vital to protecting individuals from these risks. One such strategy is responsible gambling (RG) tools. These tools track an individual’s gambling history and supplies personalized feedback and might be one way to decrease excessive gambling behavior. However, research is lacking in this area and little is known about the usage of these tools. The aim of this article is to describe user behavior and to investigate if there are different subclasses of users by conducting a latent class analysis. The user behaviour of 9528 online gamblers who voluntarily used a RG tool was analysed. Number of visits to the site, self-tests made, and advice used were the observed variables included in the latent class analysis. Descriptive statistics show that overall the functions of the tool had a high initial usage and a low repeated usage. Latent class analysis yielded five distinct classes of users: self-testers, multi-function users, advice users, site visitors, and non-users. Multinomial regression revealed that classes were associated with different risk levels of excessive gambling. The self-testers and multi-function users used the tool to a higher extent and were found to have a greater risk of excessive gambling than the other classes.


Responsible gambling tool Decrease gambling User behavior Latent class analysis Initial high usage Low repeated usage 



The current study was made possible thanks to a Grant from the Svenska Spel’s independent research council to the last author. The granting source was not involved in the preparation or execution of the current study, and was not a part of the statistical analyses or drafting of the manuscript. The authors of the current study would like to thank Playscan for supplying the data for the study (Playscan was also not involved the statistical analyses and drafting of the manuscript).


  1. Adami, N., Benini, S., Boschetti, A., Canini, L., Maione, F., & Temporin, M. (2013). Markers of unsustainable gambling for early detection of at-risk online gamblers. International Gambling Studies, 13(2), 188–204. doi: 10.1080/14459795.2012.754919.CrossRefGoogle Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi: 10.1109/tac.1974.1100705.CrossRefGoogle Scholar
  3. Andersen, R. M. (1995). Revisiting the behavioral model and access to medical care: Does it matter? Journal of Health and Social Behavior, 36(1), 1. doi: 10.2307/2137284.CrossRefPubMedGoogle Scholar
  4. Auer, M., & Griffiths, M. D. (2012). Voluntary limit setting and player choice in most intense online gamblers: An empirical study of gambling behaviour. Journal of Gambling Studies, 29(4), 647–660. doi: 10.1007/s10899-012-9332-y.CrossRefGoogle Scholar
  5. Auer, M. M., & Griffiths, M. D. (2015). The use of personalized behavioral feedback for online gamblers: An empirical study. Frontiers in Psychology. doi: 10.3389/fpsyg.2015.01406.Google Scholar
  6. Blaszczynski, A., Collins, P., Fong, D., Ladouceur, R., Nower, L., Shaffer, H., & Venisse, J.-L. (2011). Responsible gambling: General principles and minimal requirements. Journal of Gambling Studies, 27(4), 565–573. doi: 10.1007/s10899-010-9214-0.CrossRefPubMedGoogle Scholar
  7. Blaszczynski, A., Ladouceur, R., & Shaffer, H. J. (2004). A science-based framework for responsible gambling: The Reno model. Journal of Gambling Studies, 20(3), 301–317. doi: 10.1023/b:jogs.0000040281.49444.e2.CrossRefPubMedGoogle Scholar
  8. Braverman, J., & Shaffer, H. J. (2012). How do gamblers start gambling: Identifying behavioural markers for high-risk internet gambling. European Journal of Public Health, 22(2), 273–278. doi: 10.1093/eurpub/ckp232.
  9. Broda, A., LaPlante, D. A., Nelson, S. E., LaBrie, R. A., Bosworth, L. B., & Shaffer, H. J. (2008). Virtual harm reduction efforts for Internet gambling: Effects of deposit limits on actual Internet sports gambling behavior. Harm Reduction Journal, 5(1), 27. doi: 10.1186/1477-7517-5-27.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carragher, N., & McWilliams, L. A. (2011). A latent class analysis of DSM-IV criteria for pathological gambling: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychiatry Research, 187(1–2), 185–192. doi: 10.1016/j.psychres.2010.12.022.CrossRefPubMedGoogle Scholar
  11. Croudace, T. J. (2003). Developmental typology of trajectories to nighttime bladder control: Epidemiologic application of longitudinal latent class analysis. American Journal of Epidemiology, 157(9), 834–842. doi: 10.1093/aje/kwg049.CrossRefPubMedGoogle Scholar
  12. Cunningham, J., Cordingley, J., Hodgins, D., & Toneatto, T. (2011). Beliefs about gambling problems and recovery: Results from a general population telephone survey. Journal of Gambling Studies, 27(4), 625–631. doi: 10.1007/s10899-010-9231-z.CrossRefPubMedGoogle Scholar
  13. Donkin, L., & Glozier, N. (2012). Motivators and motivations to persist with online psychological interventions: A qualitative study of treatment completers. Journal of Medical Internet Research, 14(3).Google Scholar
  14. Dufour, M., Brunelle, N., & Roy, É. (2013). Are poker players all the same? Latent class analysis. Journal of Gambling Studies. doi: 10.1007/s10899-013-9429-y.
  15. Eysenbach, G. (2005). The law of attrition. Journal of Medical Internet Research, 7(1), e11. doi: 10.2196/jmir.7.1.e11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gainsbury, S., Hing, N., & Suhonen, N. (2013a). Professional help-seeking for gambling problems: Awareness, barriers and motivators for treatment. Journal of Gambling Studies, 30(2), 503–519. doi: 10.1007/s10899-013-9373-x.CrossRefGoogle Scholar
  17. Gainsbury, S., Parke, J., & Suhonen, N. (2013b). Consumer attitudes towards Internet gambling: Perceptions of responsible gambling policies, consumer protection, and regulation of online gambling sites. Computers in Human Behavior, 29(1), 235–245. doi: 10.1016/j.chb.2012.08.010.CrossRefGoogle Scholar
  18. Goldstein, A. L., Faulkner, B., Cunningham, R. M., Zimmerman, M. A., Chermack, S., & Walton, M. A. (2012). A latent class analysis of adolescent gambling: Application of resilience theory. International Journal of Mental Health and Addiction, 11(1), 13–30. doi: 10.1007/s11469-012-9396-z.CrossRefGoogle Scholar
  19. Griffiths, M. D., Wood, R. T. A., & Parke, J. (2009). Social responsibility tools in online gambling: A survey of attitudes and behavior among Internet gamblers. CyberPsychology & Behavior, 12(4), 413–421. doi: 10.1089/cpb.2009.0062.CrossRefGoogle Scholar
  20. Haefeli, J., Lischer, S., & Haeusler, J. (2014). Communications-based early detection of gambling-related problems in online gambling. International Gambling Studies, 15(1), 23–38. doi: 10.1080/14459795.2014.980297.CrossRefGoogle Scholar
  21. Haefeli, J., Lischer, S., & Schwarz, J. (2011). Early detection items and responsible gambling features for online gambling. International Gambling Studies, 11(3), 273–288. doi: 10.1080/14459795.2011.604643.CrossRefGoogle Scholar
  22. Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Health, S. I. O. P. (2012). Spel om pengar och spelproblem i Sverige 2009/2010 [Gambling and gambling problems in Sweden 2009/2010]. Retrieved from:
  24. Hodgins, D. C., & El-Guebaly, N. (2000). Natural and treatment-assisted recovery from gambling problems: A comparison of resolved and active gamblers. Addiction, 95(5), 777–789. doi: 10.1046/j.1360-0443.2000.95577713.x.CrossRefPubMedGoogle Scholar
  25. Holtgraves, T. (2009). Evaluating the problem gambling severity index. Journal of Gambling Studies, 25(1), 105–120.CrossRefPubMedGoogle Scholar
  26. Jolley, W., Lee, A., Mizerski, R., & Sadeque, S. (2013). Permission email messages significantly increase gambler retention. Journal of Business Research, 66(9), 1617–1622. doi: 10.1016/j.jbusres.2012.12.006.CrossRefGoogle Scholar
  27. Kalischuk, R. G., Nowatzki, N., Cardwell, K., Klein, K., & Solowoniuk, J. (2006). Problem gambling and its impact on families: A literature review. International Gambling Studies, 6(1), 31–60. doi: 10.1080/14459790600644176.CrossRefGoogle Scholar
  28. Kourgiantakis, T., Saint-Jacques, M.-C., & Tremblay, J. (2013). Problem gambling and families: A systematic review. Journal of Social Work Practice in the Addictions, 13(4), 353–372. doi: 10.1080/1533256X.2013.838130.CrossRefGoogle Scholar
  29. Ladouceur, R., Blaszczynski, A., & Lalande, D. R. (2012). Pre-commitment in gambling: A review of the empirical evidence. International Gambling Studies, 12(2), 215–230. doi: 10.1080/14459795.2012.658078.CrossRefGoogle Scholar
  30. Lloyd, J., Doll, H., Hawton, K., Dutton, W. H., Geddes, J. R., Goodwin, G. M., & Rogers, R. D. (2010). Internet gamblers: A latent class analysis of their behaviours and health experiences. Journal of Gambling Studies, 26(3), 387–399. doi: 10.1007/s10899-010-9188-y.CrossRefPubMedGoogle Scholar
  31. Martens, M. P., Arterberry, B. J., Takamatsu, S. K., Masters, J., & Dude, K. (2015). The efficacy of a personalized feedback-only intervention for at-risk college gamblers. Journal of Consulting and Clinical Psychology, 83(3), 494–499. doi: 10.1037/a0038843.CrossRefPubMedGoogle Scholar
  32. McBride, O., Adamson, G., & Shevlin, M. (2010). A latent class analysis of DSM-IV pathological gambling criteria in a nationally representative British sample. Psychiatry Research, 178(2), 401–407. doi: 10.1016/j.psychres.2009.11.010.CrossRefPubMedGoogle Scholar
  33. McCutcheon, A. L. (1987). Latent class analysis. Newbury Park, Calif: Sage Publications.Google Scholar
  34. Miller, W., & Rollnick, S. (2002). Motivational interviewing: Preparing people for change. New York, NY: Guilford.Google Scholar
  35. Muthén, L. K., & Muthén, B. O. (1998-2011). Mplus user guide, 6th edition. Los Angeles, CA: Muthén & Muthén.Google Scholar
  36. Neighbors, C., Rodriguez, L. M., Rinker, D. V., Gonzales, R. G., Agana, M., Tackett, J. L., & Foster, D. W. (2015). Efficacy of personalized normative feedback as a brief intervention for college student gambling: A randomized controlled trial. Journal of Consulting and Clinical Psychology, 83(3), 500–511. doi: 10.1037/a0039125.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nelson, S. E., LaPlante, D. A., Peller, A. J., Schumann, A., LaBrie, R. A., & Shaffer, H. J. (2008). Real limits in the virtual world: Self-limiting behavior of Internet gamblers. Journal of Gambling Studies, 24(4), 463–477. doi: 10.1007/s10899-008-9106-8.CrossRefPubMedGoogle Scholar
  38. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007a). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569. doi: 10.1080/10705510701575396.CrossRefGoogle Scholar
  39. Nylund, K., Bellmore, A., Nishina, A., & Graham, S. (2007b). Subtypes, severity, and structural stability of peer victimization: What does latent class analysis say? Child Development, 78(6), 1706–1722. doi: 10.1111/j.1467-8624.2007.01097.x.CrossRefPubMedGoogle Scholar
  40. Pears, K. C., Kim, H. K., & Fisher, P. A. (2008). Psychosocial and cognitive functioning of children with specific profiles of maltreatment. Child Abuse and Neglect, 32(10), 958–971. doi: 10.1016/j.chiabu.2007.12.009.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Philander, K. S. (2013). Identifying high-risk online gamblers: A comparison of data mining procedures. International Gambling Studies, 14(1), 53–63. doi: 10.1080/14459795.2013.841721.CrossRefGoogle Scholar
  42. Prochaska, J. O., DiClemente, C. C., & Norcross, J. C. (1993). In Search of how people change: Applications to addictive behaviors. Journal of Addictions Nursing, 5(1), 2–16. doi: 10.3109/10884609309149692.CrossRefGoogle Scholar
  43. Rachlin, H., Safin, V., Arfer, K. B., & Yen, M. (2015). The attraction of gambling. Journal of the Experimental Analysis of Behavior, 103(1), 260–266. doi: 10.1002/jeab.113.CrossRefPubMedGoogle Scholar
  44. Ramaswamy, V., Desarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1), 103–124. doi: 10.1287/mksc.12.1.103.CrossRefGoogle Scholar
  45. Rossini-Dib, D., Fuentes, D., & Tavares, H. (2015). A naturalistic study of recovering gamblers: What gets better and when they get better. Psychiatry Research, 227(1), 17–26. doi: 10.1016/j.psychres.2015.03.003.CrossRefPubMedGoogle Scholar
  46. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. doi: 10.1214/aos/1176344136.CrossRefGoogle Scholar
  47. Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. doi: 10.1007/bf02294360.CrossRefGoogle Scholar
  48. Shaffer, H. J., Peller, A. J., LaPlante, D. A., Nelson, S. E., & LaBrie, R. A. (2010). Toward a paradigm shift in Internet gambling research: From opinion and self-report to actual behavior. Addiction Research & Theory, 18(3), 270–283. doi: 10.3109/16066350902777974.CrossRefGoogle Scholar
  49. Slutske, W. S. (2006). Natural recovery and treatment-seeking in pathological gambling: Results of two US National Surveys. American Journal of Psychiatry, 163(2), 297–302. doi: 10.1176/appi.ajp.163.2.297.CrossRefPubMedGoogle Scholar
  50. Studer, J., Baggio, S., Mohler-Kuo, M., Simon, O., Daeppen, J.-B., & Gmel, G. (2015). Latent class analysis of gambling activities in a sample of young swiss men: Association with gambling problems, substance use outcomes, personality traits and coping strategies. Journal of Gambling Studies. doi: 10.1007/s10899-015-9547-9.
  51. Suurvali, H., Cordingley, J., Hodgins, D., & Cunningham, J. (2009). Barriers to seeking help for gambling problems: A review of the empirical literature. Journal of Gambling Studies, 25(3), 407–424. doi: 10.1007/s10899-009-9129-9.CrossRefPubMedGoogle Scholar
  52. Suurvali, H., Hodgins, D., Toneatto, T., & Cunningham, J. (2008). Treatment seeking among ontario problem gamblers: Results of a population survey. PS, 59(11), 1343–1346. doi: 10.1176/ps.2008.59.11.1343.CrossRefGoogle Scholar
  53. Tackett, J. L., Rodriguez, L. M., Rinker, D. V., & Neighbors, C. (2014). A personality-based latent class analysis of emerging adult gamblers. Journal of Gambling Studies. doi: 10.1007/s10899-014-9500-3.Google Scholar
  54. Toneatto, T., Cunningham, J., Hodgins, D., Adams, M., Turner, N., & Koski-Jannes, A. (2008). Recovery from problem gambling without formal treatment. Addiction Research & Theory, 16(2), 111–120. doi: 10.1080/16066350801923638.CrossRefGoogle Scholar
  55. Vaughn, M. G., DeLisi, M., Gunter, T., Fu, Q., Beaver, K. M., Perron, B. E., & Howard, M. O. (2011). The severe 5%: A latent class analysis of the externalizing behavior spectrum in the United States. Journal of Criminal Justice, 39(1), 75–80. doi: 10.1016/j.jcrimjus.2010.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Walker, D., Litvin, S., Sobel, R., & St-Pierre, R. (2014). Setting win limits: An alternative approach to “Responsible Gambling”? Journal of Gambling Studies, 1–22. doi: 10.1007/s10899-014-9453-6.
  57. Wangberg, S. C., Bergmo, T. S., & Johnsen, J.-A. K. (2008). Adherence in Internet-based interventions. Patient Preference and Adherence, 2, 57.PubMedPubMedCentralGoogle Scholar
  58. Wanner, M., Martin-Diener, E., Bauer, G., Braun-Fahrländer, C., & Martin, B. W. (2010). Comparison of trial participants and open access users of a web-based physical activity intervention regarding adherence, attrition, and repeated participation. Journal of Medical Internet Research, 12(1), e3. doi: 10.2196/jmir.1361.CrossRefPubMedCentralGoogle Scholar
  59. Wohl, M. A., Santesso, D., & Harrigan, K. (2013). Reducing erroneous cognition and the frequency of exceeding limits among slots players: A short (3-minute) educational animation facilitates responsible gambling. International Journal of Mental Health and Addiction, 11(4), 409–423. doi: 10.1007/s11469-012-9424-z.CrossRefGoogle Scholar
  60. Wood, R. T. A., Shorter, G. W., & Griffiths, M. D. (2014). Rating the suitability of responsible gambling features for specific game types: A resource for optimizing responsible gambling strategy. International Journal of Mental Health and Addiction, 12(1), 94–112. doi: 10.1007/s11469-013-9473-y.
  61. Wood, R. T. A., & Wohl, M. J. A. (2015). Assessing the effectiveness of a responsible gambling behavioural feedback tool for reducing the gambling expenditure of at-risk players. International Gambling Studies, 15(2), 1–16. doi: 10.1080/14459795.2015.1049191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PsychologyStockholm UniversityStockholmSweden
  2. 2.Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden

Personalised recommendations